Переохлаждение в кондиционере что это

Обновлено: 18.05.2024

Я как монтажник, только учусь и развиваюсь, и на этом тернистом пути у меня возник один вопрос.

Как правильно заправлять, ну или просто проверять работу кондиционера, по перегреву/переохлаждению. Котзаогланиана как раз читаю на эту тему, но не совсем понял, да и пишет он ведь про холодильные установки, а у нас специфика немного другая.

Прошу за ранее прощения, если что не так. Просто хочется делать все правильно и профессионально.

Любитель шаровых краников

Переохлаждение (почти) везде одинаковое.

Перегрев в капиллярных системах должен быть рассчитан. В системах в ТРВ - ~7К. В системах с ЭРВ - х/з знает, какой

Если такие мысли возникли ,это уже хорошо. Если занимаешся сплитами то переохлаждение хрен померяешь, разве что термометрами примерно , заправка по перегреву , мы экспериментальным путём пришли к табличке кэриера . но не всегда применимо , приходится включать мозг, или по крайней мере мы так думаем что включаем .

Что за табличка Кариера?

На сколько я понял то нужно заправлять до тех пор пока температура на жидкостной трубе не достигнет определенной температуры. Или ошибаюсь, и до какой?

Для начала , Котзаглониан тебе в помощь , четко определись что такое перегрев и что переохлаждение .

Попусту напрягать форум не хотелось, потому по совету еще проштудировал Патрика.

Что такое перегрев и переохлаждение, при работе кондиционера на холод, выяснил. Это значение температуры на которое, полностью сконденсированный фреон, еще понижается и должна быть равна примерно 4-7К. Перегрев это разность температуры кипения фреона и температуры на выходе с испарителя и должна быть равна примерно 5-8К. Также вроде бы понял что дозаправлять нужно наверно по значению перегрева паров фреона.

И здесь возникшие вопросы:

Замер перегрева нужно производить на газовой трубе внутреннего блока, а если труднодоступно, тогда на газовой наружного плюс поправку на потери по магистрали?

Как определить температуру кипения фреона в испарителе, ведь на сплитах нет порта низкого давления?

И все же что такое таблица Кариера?

P.S. Ну уж очень хочется в этом разобраться, тем более что некому научить.

как это нет порта низкого давления?)))

температуру мерить как можно ближе к испарителю, обычно просто задираем изоляцию от крана максимально вверх и мерим

Газовый порт при работе на охлаждение это и есть порт низкого давление . Котзаглониана нужно читать фильтруя , если ты тупо будешь заправлять до перегрева 4-7 К ,то можешь натворить делов . Сплиты как правило с капиляркой в качестве дросселя , перегрев зависит от многих факторов . Мы при заправке используем табличку Кэриера , да и то с оглядкой

Please Login or Register to see this Hidden Content

На капиллярных системах заправку по перегреву надо проводить при температуре в помещении близкой к отключению термостата. Т.е. когда внутрянка даст сигнал внешнику остановиться.

При более высоких температурах в помещении перегрев будет больше стандартного значения. В том же Патрике это все описано. ХЗ зачем вы тут с какой-то таблицей носитесь

создать условия максимального заполнения испарителя , оставляя пару градусов перегрев .

Опыт и натурные наблюдения показывают, что вплоть до 5 о перегрева в компрессор приходит жидкарь. Не в больших количествах, не постоянно а импульсами, но приходит. А пара градусов. Ну удачи

Я же говорю , создаю крайние условия работы , которые в реальной работе врядли получатся . Вопрос в основном про сплиты. Отделитель жидкости я думаю с успехом проглатывает эти пульсации .

с завода китайце вделают на околонулевой перегрев как говорят.. мы обычно на 4-5к ориентируемся тоже

Ну удачи, ага.

Опыт и натурные наблюдения показывают, что вплоть до 5 о перегрева в компрессор приходит жидкарь. Не в больших количествах, не постоянно а импульсами, но приходит. А пара градусов. Ну удачи

Практически во всех бытовых кондеях есть ОЖ, так что даже околонулевой не страшен.


Как определить температуру кипения фреона в испарителе, ведь на сплитах нет порта низкого давления?

И все же что такое таблица Кариера?

P.S. Ну уж очень хочется в этом разобраться, тем более что некому научить.

Для определения температуры кипения в испаритиеле нужен специальный мано-метро-термометр. Его не всем показывают и тем более продают .

Выглядит примерно вот так

c674a04d06cd.jpg

Но самая секретная и настоящая таблица есть только у меня )) Публикуется впервые :

Кликабельно

Please Login or Register to see this Hidden Content

Опять фреоноливы советами раскидаются, какая заправка на глаз с целью экономии времени, не надо заводить, человека стремящегося работать правильно, в заблуждение. И к чему тут эта картинка, Тс ведь написал что изучает Патрика Котзаогланиана и непременно читал эту часть и задумывался над картинкой.

продажа монтаж сервис


Теоретически, согласно труда французского автора П. Котзаглоаниана:

"Перегревом пара называют разность между температурой этого пара и температурой кипения жидкости, из которой этот пар образовался, при постоянном давлении. Для испарителей перегрев пара представляет собой разность между температурой, измеренной с помощью термобаллона ТРВ, и температурой кипения, соответствующей показаниям манометра НД.

В примере перегрев составляет: 11-4=7К."

Могу предположить, что на рисунке проиллюстрирован опыт с хладогентом R22.

Хочу пояснить, что при работе кондиционера хладагент начинает кипеть в испарителе (внутренний блок кондиционера). На выходе из испарителя он переходит в газообразную форму (т.е. жидкость полностью переходит в пар или газ), затем по мере продвижения к конденсатору хладагент продолжает нагреваться выше точки температуры кипения, т.е. он перегревается.

Что бы Вы поняли - то это так же как разогреть чайник до 100 градусов цельсия - вода в нем начнет кипеть, если продолжать нагревать чайник то температура в нем повыситься например до 107 градусов, Тогда 107-100=7. 7 градусов это и есть перегрев.

Перегретый пар. Перегрев


После того, как вся вода превратилась в газ или пар, добавление тепла увеличит температуру пара

и превысит температуру кипения 100оС. Любое повышение температуры пара выше температуры

кипения (100оС) называется перегревом. Пар при 107оС перегрет на 7оС

Перегрев - это любое превышение температуры кипения газа для жидкой фазы. Когда жидкий хладагент

кипит при температуре 4оС в испарителе и затем температура газообразного хладагента повышается,

это значит увеличение перегрева. Если изменение фазового состояния хладагента из жидкости в газ или

пар происходит при 4оС и затем температура газообразного хладагента увеличивается до 7оС,

это означает, что он перегрет на 3оС.

Зная давление, можно по таблице определить температуру кипения R410A:

фреон R410 таблица зависимости температура - давление

Кстати, измерения надо проводить только после 5-10 минут после включения кондиционера. Нужно чтобы фреон распредилился по контуру, и кондиционер вышел на заданный производителем режим работы.

Итак: Перегрев = t газ.труб. - t (по манометру)

Вот иллюстрации на эту тему (датчик температуры установлен под теплоизоляцию газовой трубы - около 10 см от вентиля):

В рассматриваемом случае в кондиционере используется фреон R410A, температура на улице 18гр.С, в комнате 25гр.С, вентилятор внутреннего блока работает на максимальной скорости.

Перегрев = 4,7-0,2=4,5 гр.С

Стоит особо отметить что если требуется частая заправка кондиционера фреоном, то это значит, что присутствуют неисправности кондиционера!

Важно! Заправка кондиционера, и определение значения "перегрев сплит системы", производиться на чистом (не забит грязью) кондиционере, в случае необходимости - надо промыть (очистить) радиаторы внутреннего и наружного блоков, а также вентилятор внутреннего блока от тополиного пуха и пыли. Скорость вентилятора внутреннего блока на период проведения работ по дозаправка, устанавливается пультом управления на максимум.

Чтобы лучше понять процессы внутри холодильной машины рекомендую ознакомиться с кратким курсом "Основы холодильной техники"

Каким фреоном заправлять кондиционер - уточните в инструкции, прилагаемой к кондиционеру, или ищите табличку с техническими характеристиками, на внутреннем или наружном блоке

По теории вроде бы все, а теперь опишу сам процесс "заправка кондиционера фреоном":

1 Включаю кондиционер на охлаждение.

2 Подключаю манометр к баллону с фреоном, чуть открываю вентиль - слегка продуваем (вытесняем воздух) из шланга.

правила расположения баллона с фреоном при заправке, в зависимости от конструкции баллона (наличие/отсутствие сифона)

3 Сразу же подключаю к сервисному порту шланг с манометром (другой конец уже подключен к баллону).

4 Устанавливаю на газовую (толстую) трубку под теплоизоляцию датчик цифрового термометра.

5 Переворачиваю вверх дном баллон с фреоном, так как нам нужна заправка жидким фреоном.

6 Заправка кондиционера - приоткрываю чуть чуть и сразу закрываю вентиль на баллоне с фреоном - так несколько раз по чуть-чуть, с перерывами.

7 Наблюдаю за температурой - температура растет. Давление поднимается. Моя задача поднять давление примерно до 7 бар (для определения более точного значения существуют зависимости (кривые) от температур на улице и в помещении для каждого типа хладагента. Чем жарче - тем рабочее давление выше.

8 Через некоторое время в процессе манипуляции краном на баллоне туда - сюда наблюдаю, что вентили (гайки) и манометр покрылись инеем. Все. перекрываю кран на баллоне и жду несколько минут.

9 Температура медленно начнет понижаться до 5-11 градусов (зависит от внешней температуры воздуха), гайки и вентиль оттаивают ото льда (инея).

10 В конце процесса заправки, Вы должны наблюдать увеличение эффективности охлаждения испарителя (внутренний блок), при этом перегрев должен составлять 4-7 градуса. Значение перегрева зависит от окружающей температуры (см. табл. Зависимость значения перегрева от окружающей температуры).

Понять сколько заправлять фреона в кондиционер можно, если замерить потребляемый ток. Если кондиционер пере заправлен то он будет потреблять существенно больше тока, чем заявлено производителем. Ток измеряется специальным тестером - токоизмерительные клещи.

Если перегрев будет менее 4 градусов, то это означает, что кондиционер пере заправили - надо не спеша стравить излишек хладагента.

11 В процессе заправки также надо проанализировать вот эту диаграмму:

Еще может пригодиться вот эта таблица:

ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ НА СОСТОЯНИЕ ХЛАДАГЕНТОВ

(одноименная глава перепечатана из книги - П. Котзаглониана)

Соотношение между температурой и давлением является одним из основных факторов, определяющих состояние хладагента как в испарителе, так и в конденсаторе, а также в обычной емкости с хладагентом. Ниже приведены более подробные объяснения влияния температуры и давления на состояние хладагента.

Кипение воды при понижении давления.

Известно, что для начала кипения воды при нормальном атмосферном давлении нужно нагреть воду до 100С. При вакуумировании фреоновой трассы кондиционера, с целью удаления паров, содержащих воду, вода, которая может находиться в трубках и испарителе, имеет температуру окружающей среды, то есть гораздо ниже 100С.

С помощью несложного опыта, можно пояснить действие вакуумирования на процесс закипания воды.

Пусть в прозрачной емкости будет вода, ее температура 30 С, емкость находится при атмосферном давлении. Понятно, что вода не кипит. Но, при подключении емкости к мощному вакуумному насосу, после начала вакуумирования видно, что вода начинает кипеть, несмотря на то, что ее температура составляет только 30С.

Это явление можно объяснить:

Поверхность воды находится под действием двух сил, которые направлены друг против друга. Первая сила Fi - внутренняя сила жидкости, направленная снизу вверх и стремящаяся вытеснить воду из сосуда.

Вторая сила Fe - внешняя сила, которая, напротив, стремиться удержать воду внутри сосуда.

До тех пор, пока силы Fi и Fe уравновешены, они взаимно нейтрализуются и в сосуде ничего не происходит.

*Модель процесса кипения, не является строrо научной, но помогает в доступной форме объяснить процессы кипения и конденсации.

СОСТОЯНИЕ ФРЕОНА В ЗАВИСИМОСТИ ОТ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ

Вакуумирование (понижение давления) внутри сосуда вызывает кипение воды.

Вакуумирование понижает давление над жидкостью - уменьшает сиу Fe. Когда в результате вакуумирования сила Fе становится меньше силы Fi, вода не может оставаться внутри сосуда и начинает выходить из него в виде пара: вода кипит (испаряется).

Подогрев воды вызывает её кипение. Подогрев yвeличивает внутреннюю cилу Fi, действуюшую в жидкости.

В результате подогрева сила Fi становится больше силы Fe, внешная сила больше не может удерживать воду в сосуде и начинается ее кипение.

Итак, чтобы вызвать кипение жидкости нужно повысить внутреннюю силу (noдoгревая жидкость), или nонuзumь внешнее давление над ее свободной поверхностью (вaкумируя сосуд).

Как вызвать кипение, поливая сосуд холодной водой?

В предыдущем примере мы вскипятили воду, вакуумируя сосуд и нарушая тем самым равновесие между силами Fe и Fi.

Когда вода закипит, закроем изолирующий вентиль сосуда. Кипение полностью прекратиться.

Потому что молекулы пара, образующиеся в процессе кипения жидкости, скапливаясь над ее поверхностью, увеличивают давление в сосуде. Когда давление становится достаточным для установления нового состояния равновесия между силами Fe и Fi кипение останавливается. Кипение начинается снова, если сосуд nолить холодной водой.

СОСТОЯНИЕ ХЛАДАГЕНТА В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ

Небольшая масса водяных паров, содержащихся в емкости, охлаждается значительно быстрее, чем большая масса воды.

В результате пары воды сжимаются быстрее, чем жидкость, и внешняя сила Fe (действующая в паровой фазе) уменьшается быстрее, чем внутренняя сила Fi (действующая в жидкости).

Когда сила Fе становится меньше силы Fi равновесие нарушается и кипение возобновляется.

Разница в удельной массе жидкости и ее пара.

Удельная масса тела это масса едиицы объема данного тела (например, 1 литр воды имеет массу 1 килограмм).

Один литр жидкого R22 при температуре 20°С имеет массу 1,2 кг, однако 1 литр паров R22, при той же температуре и атмосферном давлении, имеет массу 0.038 кг, то есть в 1,2/0,038 = 31 раз меньшую.

при 20°С и атмосферном давлении 31 литр паров R22 имеет такую же массу, как литр жидкого R22.

В результате испарения жидкого R22 при 20°С, образующиеся пары занимают объем в 31 раз больший, чем объем жидкости, из которой они образовались.

Поэтому диаметр жидкостных линий в кондиционерах всегда меньше, чем диаметр naтрубков нагнетания (всасывания), хотя давления в двух магистралях почти одинаковы.

Соотношение между давлением и температурой.

Манометры, показывают соотношение между давлением паров и температурой для хладагентов , например R22 и R410А.

Попробуем представить, что происходит внутри сосуда, содержащего R22 в жидкой фазе, когда его температура растет.

В первом сосуде жидкий R22 находится при температуре 20°С и манометр показывает. что давление в емкости составляет 8 бар. Если температура возрастает небольшое количество жидкости испаряется, а сама жидкость при этом расширяется что приводит к повышению уровня жидкости в сосуде и небольшому снижению объема паров.

Однако, принимая во внимание то, что для размещения объема паров, образовавшихся в результате выкипания некоторого объема жидкости, требуется пространство, примерно в 30 раз большее, чем объем, который занимала испарившаяся жидкость, пары в сосуде сжимаются и давление в нем повышается по мере того, как растет температура.

Поэтому во втором сосуде, температура которого составляет 27С манометр показывает давление 10 бар.

Если температура продолжает расти и доходит, например, до 34°С, количество паров увеличивается гораздо быстрее по сравнению с повышением уровня жидкости и давление достигает 12,2 бар.

Таким образом, при росте температуры жидкости внутренняя сила Fi увеличивается, что приводит к испарению определенного количества жидкости. Высвобождающийся за счет этого объем оказывается слишком малым для образовавшегося количества паров, происходит их сжатие, давление растет одновременно растет внешняя сила Fe, и так до тех пор, пока не установится равновесие сил Fi и Fe.

Итак, в замкнутом сосуде состояние смеси паров с порождающей их жидкостью (их называют насыщенными парами или парожидкостной смесью в состоянии насыщения) подчиняется очень точному соотношению (зависящему от природы жидкости) между температурой жидкости и давлением насыщенных паров.

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, хладагент R-410А, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения – 51°С.

Если жидкий хладагент находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине хладагент кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя хладагент активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере хладагента R-410А. Температура конденсации паров хладагента, так же, как и температура кипения, зависит от давления и температуры окружающей среды. Чем выше давление и температура, тем выше температура конденсации. Так, например, конденсация паров хладагента R-410А при давлении 23,5 bar начинается уже при температуре плюс 40°С. Процесс конденсации паров хладагента, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения хладагента в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно “подливать” в испаритель жидкий хладагент, а в конденсатор постоянно подавать пары хладагента. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка, ТРВ, ЭРВ), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 23,5 bar.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Схема компрессионного цикла охлаждения

Рис. 1. Схема компрессионного цикла охлаждения

Кондиционер – это та же холодильная машина, предназначенная для тепловой обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация – при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 23,5 bar и температуру до плюс 70-90°С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ (хладагент) полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.

При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается (примерно в три раза), часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Парожидкостной хладагент кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого “гидравлического удара”, возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки, ТРВ, ЭРВ) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Риc. 2. Диаграмма давления и теплосодержания

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть – состоянию насыщенного пара. Две кривые соединяются в центре в так называемой “критической точке”, где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Сжатие пара в компрессоре.

Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.

Конденсация.

В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.

Процесс в конденсаторе происходит в три стадии: снятие перегрева ( D-E ), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).

Рассмотрим кратко каждый этап.

Снятие перегрева ( D-E ).

Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.

На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.

Конденсация (Е-А).

Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.

Переохлаждение жидкости (А-А`).

На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе.

Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока (А`-B).

Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.

Испарение жидкости в испарителе (В-C).

Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) – обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем.

Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный цикл охлаждения.

В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).

Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.

С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.

Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.

Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка эффективности цикла охлаждения

Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).

Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.

Насчет аллергии медики до сих пор к единому мнению, кстати, не пришли. А вот утечка некоторых специфических компонентов из системы охлаждения действительно может вызывать сухость в горле, кашель или приступ, похожий на астматический. Ну и многие слышали про страшную инфекцию, вспыхнувшую впервые в 70-х годах прошлого века на американском слете легионеров и унесшую жизни 1 % делегатов. Это легионеллез, при котором бактерия легионелла, размножающаяся в водной среде и с помощью систем кондиционирования разносимая по помещению, вызывает заболевание, похожее на пневмонию.

Но кроме этих неприятных заболеваний у попавшего в цепкие лапы прогресса урбаниста бывает и менее опасное, но более частое состояние — выраженная мышечная боль в той части организма, которая попала под струю холодного воздуха.

Что происходит в мышце? Банальное асептическое (неинфекционное, негнойное) воспаление! В ответ на локальное (местное) действие холода в мышце возникает тоническое напряжение или, иными словами, мышечный спазм. В мышце нарушается кровообращение, накапливаются ненужные вещества, в том числе и медиаторы воспаления, которые активируют болевые рецепторы.

spina.jpg

Советы врача

1. Старайтесь не попадать под прямую струю холодного воздуха. Сейчас в кондиционерах имеются различные шторки и направители, чтобы обеспечить в помещении равномерное распределение холодных и теплых слоев. Прочтите инструкцию к установке или обратитесь к специалистам. Особенно важно следить, чтобы кондиционер не дул на вас ночью, так как именно ночью разыгрываются самые драматичные события в спинах наших пациентов. При включенном кондиционере не рекомендуется открывать двери и окна, поскольку это станет дополнительным источником сквозняка и повысит риск переохлаждения.

2. Можно закрывать шторы или жалюзи, чтобы не создавать в комнате парникового эффекта от нагретых солнцем поверхностей. Можно тонировать стекла или заклеить их светоотражающей пленкой, теплоизолировать помещение специальными материалами — так же как и для сохранения тепла в зимнее время, теплоизоляция необходима летом для сохранения прохлады. Вечером открывая окна с более прохладной стороны, можно пользоваться вентиляторами, также следя, чтобы под поток воздуха от них не попадали люди.

А еще стоит подумать над покупкой энергосберегающих лампочек, ведь они выделяют на 80 % меньше тепла, чем привычные лампы накаливания. Да и вообще — выключайте неиспользуемые электроприборы — они тоже нагревают воздух в комнатах на 1–2 градуса, но незаметно. Кроме того, под окнами, выходящими на солнечную сторону вы можете посадить красивое деревце. Через несколько лет можно будет оценить ваш вклад в озеленение города и насладиться теньком и видом зелени. Приятно и полезно!

3. Кондиционер необходимо регулярно чистить. Нечищенный фильтр кондиционера со временем начинает распространять с потоком воздуха болезнетворные микроорганизмы. У домашних кондиционеров специалисты рекомендуют промывать фильтр каждую неделю. Для рабочих тем более не жалейте денег и времени — отсутствие работников выйдет дороже!

4. Следует озаботиться покупкой увлажнителей воздуха. Кондиционеры могут вызывать снижение влажности в помещении, а сухость кожи и слизистых — не самое приятное ощущение в прохладе. У этого явления, конечно, есть и позитивные стороны. Высушивание является профилактикой роста плесени, грибковых заражений стен и потолка помещения, убирает запах сырости и цветения, присущих климату с высокой влажностью. Но вот люди страдают.

5. Используйте другие способы охладиться, но без фанатизма: напитки со льдом, несомненно, хороший метод охлаждения изнутри, но ими легко вызвать переохлаждение ротовой полости и горла. Чтобы потом не ходить к стоматологу и отоларингологу, их стоит пить маленькими глотками. Та же рекомендация — для горячего чая, который тоже стимулирует самоохлаждение организма только путем повышения потоотделения. В этом случае на человеке должна быть одежда из натуральных, хорошо впитывающих пот тканей.

leto.jpg

Можно попробовать холодный и горячий душ. Для детей стоит вспомнить о таком древнем способе охлаждения, как обертывание мокрого полотенца вокруг головы и мест, где легко прощупывается пульс: на сгибах локтей, запястьях, под коленями. Можно просто облить ножки ребенка прохладной водичкой. Если жара все-таки допекает, можно поставить вентилятор, который будет дуть на обычную пластиковую бутылку с замороженной водой, — так можно снизить температуру воздуха в небольшой комнате на 2–3 градуса.

7. Старайтесь ограничить двигательную активность в самую жару. Не стоит затевать ремонт балкона в районе полудня, а также организовывать шоппинг или прогулку по людным местам. Следите, чтобы в подъездах в жаркое время были плотно закрыты двери, а вечером — хорошенько проветривайте помещения. Следите, чтобы всякие транспаранты и реклама не заслоняли окна офисов и квартир. Носите с собой бутылку воды — она может понадобиться вам или окружающим. Будьте бдительны! Не оставляйте на солнце детей и стариков. Особенно в машинах.

Помните, что люди живут на Земле несколько миллионов лет, а кондиционер придуман совсем недавно. Старайтесь вести здоровый образ жизни, поддерживать хорошую физическую форму, укреплять иммунитет — и вы будете чувствовать себя отлично как в зимнюю стужу, так и в летний зной.

Все кондиционеры работают за счет испарения и конденсации хладагента в его замкнутом контуре. В качестве хладагента выступает газ фреон, который может быть нескольких типов: современный озонобезопасный R410A, достаточно вредный для окружающей среды хлорсодержащий R22, R407c и R600a, используемые в основном в мобильных моноблоках и промышленных холодильных системах.

Очень многие неисправности в работе климатической техники связаны с утечкой рабочего газа через связующий медный трубопровод между блоками сплит-системы или сквозь трещины в самих модулях. Чтобы устранить проблему нехватки хладагента, нужно наполнить кондиционер фреоном частично или полностью, а способы, как это сделать самому, будут рассмотрены дальше.

Признаки утечки фреона

заправка по весам

В первую очередь мастер должен знать, каковы признаки утечки хладагента. В работе кондиционера могут насторожить следующие особенности:

Все эти признаки могут свидетельствовать о нехватке рабочего газа и требовать вызова мастера из сервисной службы.

Если кого-то интересует заправка бытового кондиционера своими руками, то нужно помнить о рисках окончательно испортить оборудование. Осуществить это проблематично и с точки зрения наличия рабочих инструментов. Тем более каждый вид хладагента имеет свои особенности, в связи с которыми не все методы заправки подойдут в том или ином случае.

Как определить утечку хладагента

Прежде чем начать заправку, нужно проверить прибор на наличие утечки газа. Это делается следующим образом:

  • к портам наружного блока подключают манометр;
  • к нему подсоединяют баллон с азотом через редуктор высокого давления;
  • вкачивают 30 атм;
  • проверяют специальной пенной жидкостью наличие утечки на соединениях обоих блоков;
  • если имеются паечные соединения на трассе, то их тоже тестируют.

Далее переходят к основному процессу, выполнить который можно с помощью одного из приведенных ниже способов.

Способы заправки кондиционера фреоном

Существуют несколько основных методов заправки холодильных систем фреоном, применяемые к домашним кондиционерам (сплитам), мульти-сплитам, мобильным и мультизональным системам.

Заправка кондиционера своими руками потребует следующий набор:

  • манометр;
  • вакуумный насос;
  • баллон с фреоном;
  • строительные весы;
  • слесарные инструменты – шведский ключ, шестигранники, отвертка.

Вместо манометра и вакуумного насоса можно приобрести манометрическую станцию.

Заправка по весам

Вакуумирование. Накручивают манометр на шредеры и открывают не нем кран. Включают вакуумный насос и выдерживают 10 минут. Закрывают кран на манометре и выключают насос.

Подключение баллона с фреоном. Емкость с газом переворачивают вверх дном и ставят на весы, показатели которых предварительно сбрасывают на нулевые значения. Открывают кран на манометре и вливают необходимое количество хладагента по весам.

Норма для каждого кондиционера и тип заливаемого в компрессор газа указаны в технической документации и на шильдике.

Кран закрывают и отсоединяют манометр, после чего закручивают крышки на портах. Включают кондиционер и проверяют его функциональность.

Этот способ считается самым правильным, но его осложняет необходимость иметь дорогостоящие весы для взвешивания фреона.

Если требуется наполнить кондиционер 410 фреоном самому, то сначала полностью стравливают его остатки в манометрическую станцию для сбора, а потом вливают газ по весам. Это связано с тем, что данный тип фреона состоит из смеси различных газов с разной степенью летучести. При утечке одного из компонентов в большем объеме происходит изменение состава, а, следовательно, теряются необходимые свойства хладагента.

Заправка по давлению

Сначала нужно подсоединить манометр к газовому порту работающего на охлаждение кондиционера. Рабочее давление прибора должно быть 3-3,5 атм. Если оно ниже этих отметок, то требуется дозаправка. Для этого подключают баллон с фреоном и небольшими порциями начинают заправлять его в систему путем открывания кранов на манометре на 5-10 секунд.

Чтобы не обжечь руки газом, удобнее использовать быстросъемные соединения.

Этот способ удобен именно при необходимости дозаправки кондиционера своими руками небольшой порцией хладагента R22. Во всех остальных случаях наиболее простой и оптимальный метод – это заправка с весами, то есть по массе.

Заправка по перегреву и переохлаждению

Достаточно точным методом является заправка кондиционера по перегреву или по переохлаждению. Весь смысл заключается в ориентировке на разность температур.

В случае с переохлаждением имеется ввиду соотношение температурных показателей жидкости и конденсации при одинаковом давлении. Определить температуру конденсации можно так: манометром измеряется ее давление, а затем данные соотносятся со значениями шкалы манометрического коллектора в зависимости от хладагента. Для определения перегрева сравнивают температурные значения газа в нормальном состоянии и при его кипении в условиях одинакового давления.

Об утечке хладагента и необходимости его дозаправки говорит перегрев выше и переохлаждение ниже нормы.

Эти методы не подойдут для заправки домашних кондиционеров, то есть настенных сплит-систем. Но они очень удобны для полупромышленных установок, так как их внешний блок имеет требуемые штуцеры. Дополнительно к инструментам понадобится инфракрасный термометр.

Заправка кондиционера по току

Для определения рабочего тока компрессора понадобятся специальные токоизмерительные клещи, которые накладываются на фазу провода питания работающего внешнего блока. Если полученные значения ниже указанных в мануале или на шильдике, а труба обмерзла, то производят дозаправку фреоном до выравнивания показателей.

Все остальные этапы полностью совпадают с этапами заправки кондиционера фреоном по весам, которые можно будет посмотреть на видео в конце статьи.

Этот метод применим и в случае с устранением последствий утечки у полупромышленного оборудования.

Стоимость заправки кондиционера фреоном

Не существует никакой зависимости цены на заправку кондиционера от применяемого метода. Сумма рассчитывается относительно мощности прибора.

Но сколько стоит заправка фреоном в среднем? Устройство холодопроизводительностью в 2,5 кВт потребует порядка 3500 рублей для восполнения хладагента во всем объеме. На каждый последующий типоразмер набавляется по 500-700 рублей. Таким образом цена заправки фреоном сплит-системы DAIKIN с мощностью в 10 кВт обойдется ее владельцу в 7000-8000 рублей.

Отзывы о компании ООО "ИНТЕХ":





Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

Читайте также: