Триммер на самолете назначение

Обновлено: 16.05.2024

Резервный футомер показывает высоту в футах (ft) 1 фут = 0.3048 метра). Стандартное давление (QNE), давление на уровне моря (QNH), давление аэродрома (QFE) устанавливаются при помощи специальной "кремальеры"-"задатчика". Значение давления показывается посередине с правой и с левой сторон шкалы прибора - в милибарах и дюймах ртутного столба.

Прибор имеет две стрелки и ромбовидный маркер.

Длинная стрелка показывает сотни футов, короткая - тысячи футов, маркер показывает десятки тысяч футов. Таким образом, можно сделать вывод что альтиметр на картинке показывает высоту 1680 футов (или ~512м в пересчёте).

Компьютер воздушных сигналов (GDC 74A). Назначение. Состав и расположение на самолете.

- компьютер воздушных сигналов - получает информацию от системы полного и статического воздушного давления, а также от датчика температуры наружного воздуха. Компьютер воздушных сигналов ADC рассчитывает барометрическую высоту (ALT - Altitude), воздушную (приборную) скорость (IAS - Indicator Air Speed), истинную воздушную скорость (TAS - True Air Speed), вертикальную скорость (VS - Vertical Speed), направление и скорость ветра (Wind Direction and Velocity) и температуру наружного воздуха (TAT - Total Air Temperature, OAT - Outsaid Air Temperature).

Блок ADC установлен на стойке оборудования в хвостовом обтекателе за шторкой багажного отсека.

Резервный указатель скорости. Принцип работы. Назначение. Значение цветового обозначения шкалы прибора. Назначение дополнительных шкал прибора. Порядок использования.

РЕЗЕРВНЫЙ (пневматический) указатель воздушной скорости находится на нижней центральной приборной доске. На указателе имеются цветные дуги для обозначения максимальной скорости, диапазона предупреждения о высокой крейсерской скорости, нормального рабочего диапазона, рабочего диапазона для конфигурации с полностью выпущенными закрылками и диапазона предупреждения о низкой воздушной скорости.

На приборе применяется цветная маркировка.

Белая дуга показывает диапазон скоростей, в котором можно использовать закрылки.

Зеленой дугой отмечают диапазон скоростей, в котором следует эксплуатировать самолет.

Желтая дуга показывает скорости, допустимые только при отсутствии турбулентности.

Красная черта обозначает скорость, после превышения которой, самолет может начать разрушаться.

Дополнительная белая шкала внизу используется для облегчения вычисления истиной воздушной скорости.

Скорость показывается в узлах (knots). 1 узел = 1.852км/ч

Резервный клапан статического давления

Клапан резервного приемника статического давления (ALT STATIC

AIR) расположен рядом с рычагом управления газом. Клапан ALT

STATIC AIR обеспечивает подачу статического давления из

кабины в случае засорения внешнего приемника статического

При подозрении на неправильные показания приборов в связи с

попаданием воды или льда в воздуховоды стандартного внешнего

приемника статического давления, необходимо потянуть на себя

клапан резервного приемника статического давления.

10. Магнетометр (GMU44). Назначение. Расположение. Принцип определения курса. Погрешности измерения и их учет.

Индукционный датчик GMU 44

Индукционный датчик используется для измерения характеристик магнитного поля.

Данные от индукционного датчика выдаются в курсовертикаль GRS 77 на

обработку. Питание на индукционный датчик поступает от курсовертикали GRS 77.

Индукционный датчик подключен к курсовертикали GRS 77 по цифровому интерфейсу RS-485.

Индукционный датчик установлен в левой части крыла, доступ к нему осуществляется через панель на поверхности крыла.

Калибровка магнитометра G1000

Примечание: Для обеспечения точности измерений и отсутствия магнитных помех калибровка должна проводиться на девиационной площадке.

При проведении калибровки на перроне необходимая точность калибровки не обеспечивается.

Точность системы курсовертикали гарантируется только при проведении калибровки на девиационной площадке при отсутствии вблизи объектов из магнитных материалов.

Порядок калибровки курса.

1. Завести самолет на девиационную площадку.

2. Убедиться в отсутствии рядом с самолетом объектов из магнитных материалов. При наличии объектов из магнитных материалов удалить их; если это невозможно, совершать маневры таким образом, чтобы магнитометр находился на расстоянии не менее 6 м (19,7 фута) от таких объектов.

3. На девиационной площадке развернуть самолет так, чтобы его истинный курс совпал с магнитным направлением северного меридиана (±5°).

При неподвижном самолете приступить к калибровке магнитометра курсовертикали GRS 77 следующим образом:

1. Включить режим инициализации системы:

(b) Нажать на внутреннюю ручку ручки FMS (система управления полетом) для выбора процедуры калибровки.

Выбрать пункт MAGNETOMETER (магнитометр) и нажать клавишу ENTER.

(c) Следовать пунктам технологической карты, отображаемой на экране индикатора.

После выполнения или подтверждения каждого пункта нажимать клавишу ENTER.

При мигании поля CALIBRATE (калибровка) нажать клавишу ENTER для начала калибровки.

(d) На экране индикатора появляются указания, сообщающие оператору о том, когда необходимо развернуть самолет, остановиться, снова развернуть самолет.

2. При появлении указания развернуть самолет рулением развернуть самолет вправо. При развороте самолета на угол приблизительно 25-30° относительно предыдущего положения на экране индикатора появляется указание оператору остановить самолет.

3. На экране индикатора появляются указания оператору разворачивать самолет с определенным шагом до полного круга и останавливать его в этом положении.

Для успешной калибровки достаточно разворачивать самолет с шагом

приблизительно 30° (±5°), каждый раз оставаясь в полученном положении в течении некоторого времени.

Для завершения калибровки нажать клавишу ENTER на панели индикатора.

Дополнительную информацию о конфигурировании и проверке после установки см. в Руководстве по установке курсовертикали GRS 77 и магнитометра GMU 44.

Рулевые поверхности имеют обычно аэродинамическую компенсацию, предназначенную для уменьшения шарнирного момента на руле.

От значения шарнирного момента зависят усилия на рычаге управления рулем. Шарнирный момент равен произведению аэродинамической силы РР, действующей на руль, на расстояние b между направлением действия силы и осью вращения руля: МШ = РРb (рис. 3.3.).


Рис. 3.3. Аэродинамическая компенсация: а — осевая;

б — роговая; в — внутренняя

Шарнирный момент уравновешивается моментом, создаваемым силой SB тяге управления: MШ=Pрb=Sh, где h - расстояние от оси вращения руля до оси тяги. Из приведенного равенства следует, что для уменьшения усилия в тяге управления необходимо уменьшать шарнирный момент.

Аэродинамическая компенсация выполняется в виде осевой компенсации и сервокомпенсатора.

Осевая аэродинамическая компенсация достигается смещением оси вращения руля назад от его передней кромки. При этом уменьшается плечо аэродинамической силы руля, а следовательно, и шарнирный момент. Участок руля, расположенный перед осью вращения, называется аэродинамическим компенсатором.

Осевая аэродинамическая компенсация выражается отношением площади аэродинамического компенсатора ко всей площади руля. Ее значение не превышает 0,25 - 0,28 (дальнейшее увеличение ведет к ухудшению аэродинамики руля вследствие выступания носка за профиль несущей поверхности и может привести к пере компенсации руля). Носок пере- компенсированного руля при значительных углах отклонения испытывает давление воздушного потока, и на нем создается момент, направленный в сторону отклонения руля. При этом шарнирный момент может уменьшиться до нуля и даже стать отрицательным, когда знак усилия на рычаге управления меняется на обратный, что недопустимо при управлении самолетом.

Разновидностями осевой аэродинамической компенсации являются роговая и внутренняя компенсации. Роговая компенсация применяется на легких не скоростных самолетах. В этом случае аэродинамический компенсатор находится не по всей длине руля, а вынесен к его концу. При отклонении руля воздушная нагрузка, действуя на роговой выступ, создает момент, направленный против действия шарнирного момента на руле.

При внутренней компенсации носовая часть рулевой поверхности выполняется в виде пластины, соединенной с несущей поверхностью самолета воздухонепроницаемой эластичной перегородкой, например из прорезиненной ткани. Перегородка, не мешая отклонению рулевой поверхности, препятствует перетеканию воздуха из области повышенного в область пониженного давления. Этим достигается повышение эффективности компенсатора.

Внутренний компенсатор не выходит в поток и не увеличивает сопротивления, однако он не позволяет отклонять рулевую поверхность на большие углы, поэтому обычно применяется на элеронах крыльев значительной толщины.

Сервокомпенсатор применяется в дополнение к осевой компенсации, когда ее эффективность недостаточна. Он предс­тавляет собой небольшую поверхность, шарнирно закрепленную в задней части руля (элерона) и автоматически отклоняющуюся при отклонении руля, но в противоположную сторону (рис. 3.4.).

Отклонение сервокомпенсатора обеспечивается тягой, один конец которой шарнирно крепится к крылу (стабилизатору, килю), другой - к сервокомпенсатору. При отклонении руля тяга отклоняет компенсатор и аэродинамическая нагрузка Рк, действующая на сервокомпенсатор, создает момент Мк = РкL, направленный в сторону, противоположную действию шарнир­ного момента руля, и, следовательно, уменьшает его.

Поскольку нагрузка Рк направлена в сторону, противополож­ную аэродинамической силе Рр, действующей на руль, эффек­тивность руля снижается и для балансировки самолета руль приходится отклонять на больший угол, что вызывает дополни­тельное лобовое сопротивление самолета.

Пружинный сервокомпенсатор в отличие от обычного откло­няется в зависимости не от углов отклонения руля, а от усилий, которые действуют в тяге управления рулем, и, следовательно, от шарнирного момента. При небольших усилиях в тяге руль отклоняется, а компенсатор остается неподвижным относитель­но руля. Если же усилие в тяге превысит заданное значение, одновременно с отклонением руля будет отклоняться в проти­воположную сторону сервокомпенсатор, причем углы его откло­нения будут пропорциональны шарнирному моменту.


Рис. 3.4. Схема работы сервокомпенсатора:

1,4 –тяги; 2 –сервокомпенсатор; 3 –руль


Рис. 3.5. Схема работы пружинного сервокомпенсатора:
1 – пружина; 2 –сервокомпенсатор;

3, 5 –тяги; 4 — качалка.

Пружин­ный сервокомпенсатор применяется обычно на руле направле­ния двух и много двигательных самолетов, когда при отказе двигателя возникают большие разворачивающие моменты и для балансировки самолета требуются большие усилия на рычагах управления рулем.


Рис. 3.6. Схема работы серво руля:

1 — тяга управления серво рулем; 2 — качалка;

3 — руль; 4 — серво руль

Принцип устройства и работы механизма пружинного сервокомпенсатора состоит в следующем (рис. 3.5.). Тяга управления рулем крепится не к рычагу на руле, как обычно, а к качалке, имеющей возможность поворачиваться относительно своей оси. Качалка тягой соединяется с сервокомпенсатором. Качалка от вращения удерживается пружинами, имеющими предварительную затяжку. Если усилие в тяге 5 не превышает усилия затяжки пружины, оно передается через качалку и пружину на руль и отклоняет его, качалка не проворачивается и компенсатор остается неподвижным относительно руля. Если же усилие в тяге большое, оно, передаваясь на руль, вызовет сжатие пружины и поворот качалки. В этом случае одновременно с отклонением руля в противоположную сторону отклоняется и сервокомпенсатор.

Серво руль предназначен для уменьшения усилий на рычагах управления самолетом. Конструктивно серво руль подобен сервокомпенсатору, но в отличие от него имеет самостоятельную систему управления из кабины пилотов.

На отклоненный серво руль действует аэродинамическая сила РС (рис. 3.6.), создающая относительно оси вращения руля момент, равный произведению силы РС на ее плечо: МС = РСLС. Под действием силы РС руль отклоняется в сторону, противоположную направлению отклонения серво руля, до тех пор, пока не наступит равенство: РСLС = РРL, где РP- аэродинамическая сила на руле;

L - плечо этой силы. Поскольку плечо Lс значительно больше L усилие в тяге управления соответственно меньше, чем если бы тяга подводилась непосредственно к рулю.

Триммер служит для снятия (или уменьшения) усилий с рычага управления рулевой поверхностью, отклоненной в балансировочное положение. Воздушная нагрузка создает на отклоненном триммере момент РТb (рис. 3.7.), равный шарнирному моменту на руле: МШ = РРa = РТb.

Конструктивно триммер подобен сервокомпенсатору и серво рулю, но отличается от них системой управления. Триммер, как и серво руль, имеет самостоятельную систему управления из кабины пилотов, но эта система самотормозящая. Поэтому при снятии усилий с рычага управления триммер под действием аэродинамических сил: не возвращается в нейтральное положение.


Рис. 3.7. Схема работы тримме­ра:

1 –тяга управления рулем;

2 –механизм управления триммером;

3 –тяга управления триммером;

4 –триммер; 5 — руль

В принципе, при отказе системы управления рулем триммер может быть использован для отклонения руля, но в замедленном темпе и на небольшие углы.

Триммер-сервокомпенсатор объединяет функции триммера и сервокомпенсатора в одной конструкции. Он отклоняется автоматически как сервокомпенсатор и может отклоняться дополнительно от системы управления из кабины пилотов. Управление из кабины осуществляется обычно посредством электромеханизма, установленного на неподвижной части самолета.


Рис. 3.8. Схема управления триммером-сервокомпенсатором:

1 –механизм управления триммером;

2 –тяги; 3, 6 ­­–качалки; 4 — руль;

Схема такого управления изображена на (рис. 3.8.). При перемещении штока электромеханизма через качалки и тяги движение передается на триммер-сервокомпенсатор. Ось вращения качалки 3 совпадает с осью вращения руля. При несовпадении осей нарушается независимость в работе механизма в качестве триммера или сервокомпенсатора.

ТЕМА №4

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.











Инструкция по триммированию 4-х канального вертолета

Настройте вертолет на максимальную послушность и управляемость.

Большинство моделей проходят первоначальную настройку и способны полететь из коробки, но если при полете вертолет отклоняется (тянет) в сторону – необходимо произвести его настройку.

Причем настройку нужно производить оторвавшись на 50 см и выше от земли, иначе вертолет будет тянуть на воздушной подушке, создаваемой винтами. Только поднявшись выше эффект воздушной подушки сойдет на нет и модель можно настроить для плавного зависания.

Пример триммирования 4-х канального вертолета будет осуществляться на модели WL Toys V911. Вертолет V911 имеет классическую схему винтов и фиксированный шаг лопастей основного ротора. Данная модель оборудована двумя сервоприводами:

Перед самим процессом триммирования необходимо разобраться, какие рычаги пульта управления отвечают за движение сервоприводов и поведение модели в полете (пример для режима Mode 2 – самый распространенный):

С принципом управления и движением сервоприводов Вы ознакомлены, теперь можно приступить к процессу триммирования.

Разделим весь процесс триммирования вертолета на пункты:

Итак, Вы включили вертолет, взлетели на пол метра от земли или ровной поверхности и если вертолет держится в одной области достаточно ровно, не тянет в одну из сторон, тогда триммировка не нужна и можно приступать к полетам. Если же вертолет постоянно уходит в одну из сторон, приступим:

  • Если вертолет уходит вправо или влево – необходимо воспользоваться триммером левого сервопривода и регулировать по крену.
  • Если вертолет уходит вперед или назад – необходимо воспользоваться триммером правого сервопривода и регулировать по тангажу.
  • Если вертолет уносит в двух направлениях (одновременно смещается и по крену и тангажу) – необходимо одновременное регулирование обоих триммеров.

Механическое триммирование.

Сделав пробный взлет, мы обнаружили, что вертолет сильно тянет в одну из сторон, несколько перемещений индикатора триммера не исправило ситуацию, тогда вернем триммер в нулевое положение и приступим к механическому триммированию модели.

Изменим длину тяги от сервопривода до тарелки автомата перекоса, подкрутив соответствующий регулятор совсем немного. Помните, что регулировать необходимо по-немногу, каждый раз проверяя результат. Основные действия должны заключаться в следующем:

  • Если вертолет уходит вперед – снимите правую тягу, вращая наконечник тяги против часовой стрелки удлините ее немного и поставьте обратно.
  • Если вертолет уходит назад - снимите правую тягу, вращая наконечник тяги по часовой стрелке укоротите ее немного и поставьте обратно.
  • Если вертолет уходит влево - снимите левую тягу, вращая наконечник тяги против часовой стрелки удлините её немного и поставьте обратно.
  • Если вертолет тянет вправо - снимите левую тягу, вращая наконечник тяги по часовой стрелке укоротите ее и поставьте обратно.

Удлинение и укорачивание тяг производите плавно и проверяйте результат, порой достаточно повернуть наконечник на несколько градусов, чтобы добиться нужного результата.
После каждого действия с регулировкой, запускайте модель и проверяйте ее поведение в воздухе. Повторите указанные выше пункты несколько раз, чтобы добиться необходимого эффекта и стабильного полета.

Триммирование при помощи пульта управления.

Механическое триммирование можно прекратить добившись хорошего, но не отличного результата – более тонкую настройку стабильности зависания можно добиться при помощи триммирования с пульта управления.

Триммирование с пульта управления также начинается с пробы взлета и поднятия на высоту от 50 сантиметров.

Настройка триммирования производится при помощи специальных переключателей на пульте, расположенных сбоку и снизу от рычагов (стиков). Нам нужен правый рычаг и переключатели слева и снизу от него. Слева переключатель отвечает за тангаж (полеты вперед, назад), снизу – крен (полеты, крены влево, вправо)
Для регулировки вертолета произведите следующие действия в зависимости от поведения вертолета:

  • Если вертолет уносит вперед – переключите триммер тангажа вниз (переключатель находится слева от правого рычага). Переключайте триммер вниз несколько раз до стабильного удержания и исключения полета вперед без рычага.
  • Если вертолёт уносит назад - переключите триммер тангажа вверх (переключатель находится слева от правого рычага). Переключайте триммер вверх несколько раз до стабильного удержания и исключения полета назад без рычага.
  • Если вертолёт уносит влево – переключите триммер крена вправо (переключатель находится снизу правого рычага). Переключите триммер вправо несколько раз до стабильного удержания модели и исключения полета влево без рычага.
  • Если вертолёт тянет вправо - переключите триммер крена влево (переключатель находится снизу правого рычага). Переключите триммер влево несколько раз до стабильного удержания модели и исключения полета вправо без рычага.

Повторите указанные выше рекомендации для выравнивания модели в воздухе и наслаждайтесь полетом.








Сбалансировать самолет в установившемся прямолинейном полете - это значит уравновесить все продольные статические моменты относительно оси Z, Mz = 0.

Самолеты Як-52 и Як-55 в продольном отношении балансируются во всем диапазоне допустимых скоростей полета и высот.

Для объяснения балансировки допустим, что самолет Як-52 совершает установившийся горизонтальный полет (Рис. 127). На самолет действуют: сила тяжести G, подъемная сила Y, сила лобового сопротивления X, сила тяги силовой установки Р.


Рис. 127 Условия продольного равновесия самолета в горизонтальном полете

Вес приложен к центру тяжести, следовательно, момент его относительно оси Z, проходящей через ЦТ, всегда равен нулю Подъемная сила Y имеет относительно оси Z некоторое плечо а, и ее момент Y-a в данном случае стремится повернуть самолет в сторону пикирования, т. е. уменьшить угол атаки. Считаем, что сила тяги Р и сила лобового сопротивления Х проходит через ЦТ, т. е. их момент относительно него равен нулю. Следовательно, для того чтобы самолет Як-52 продолжал горизонтальный полет, необходимо скомпенсировать появившийся пикирующий момент. Для этого необходимо горизонтальное оперение (триммер) установить так, чтобы горизонтальное оперение создало некоторую подъемную силу y Г.О. , направленную вниз Момент этой силы в данном случае будет кабрирующим и равным по величине моменту подъемной силы крыла. Самолет будет сбалансированным при условии, что

Ранее было определено, что кабрирующий момент считается положительным, а пикирующий - отрицательным. Момент подъемной силы крыла считается моментом крыла, а момент подъемной силы горизонтального оперения - моментом горизонтального оперения.

Условие равновесия записывается формулой

Момент крыла и момент горизонтального оперения - это наиболее значительные продольные моменты. Кроме них момент может быть от силы тяги воздушного винта, когда направление ее не проходит через ЦТ, когда имеется децентрация тяги. Работающий воздушный винт также вызывает момент, возникающий от изменения подъемной силы горизонтального оперения под влиянием отбрасываемой струи воздуха от винта.

Силы лобового сопротивления частей самолета могут создавать моменты, если они взаимно параллельны и направлены против движения, причем направления их могут проходить выше или ниже ЦТ, следовательно, моменты их могут полностью или частично уравновешиваться.

Итак, сбалансированным считается самолет, у которого алгебраическая сумма всех моментов относительно оси Z равна нулю:

АЭРОДИНАМИЧЕСКАЯ КОМПЕНСАЦИЯ. ТРИММЕР

Аэродинамическая сила, возникающая на руле при его отклонении, создает относительно оси вращения руля шарнирный момент, который стремится вернуть руль в нейтральное положение. Для удержания руля высоты в отклоненном положении возникающий шарнирный момент уравновешивается моментом, создаваемым усилием, приложенным к ручке управления и педалям.

Величина шарнирного момента возрастает при увеличении угла отклонения руля высоты, его геометрических размеров и скоростного напора. При больших скоростях полета для преодоления шарнирных моментов могут потребоваться недопустимо большие усилия, особенно у самолетов больших размеров. На самолётах Як-52 и Як-55 уменьшение усилии на ручке управления, педалях и элеронах достигается применением роговой и осевой аэродинамических компенсаций (Рис. 128, а, б)


Рис. 128 Виды аэродинамических компенсаций: а - роговая; б - осевая


Рис. 129 Принцип действия роговой аэродинамической компенсации


Рис. 130 Принцип действия осевой аэродинамической компенсации

Принцип действия роговой и осевой аэродинамической компенсации сводится к приближению центра давления руля к оси его вращения.

Роговой компенсацией руля называется часть его площади в виде “рога”, расположенного впереди оси вращения. Принцип действия роговой компенсации заключается в том, что аэродинамическая сила y k , действующая на ”рог”, создает относительно оси вращения момент, направленный в сторону, противоположную шарнирному моменту (Рис. 129):

Момент, создаваемый роговой компенсацией YК В, уменьшает шарнирный момент, а следовательно, и усилие, действующее на ручку управления (педали). При больших углах отклонения руля роговая компенсация ухудшает характер обтекания оперения, увеличивает его лобовое сопротивление. Кроме того, выступающий “рог” служит источником вихреобразования, что способствует вибрации хвостового оперения.

Осевой аэродинамической компенсацией руля называется часть его площади, расположенной впереди оси вращения (Рис. 130).

Принцип действия осевой аэродинамической компенсации подобен принципу действия роговой компенсации. Аэродинамическая сила, действующая на площадь компенсации, создает относительно оси вращения момент, направленный в сторону, противоположную шарнирному моменту, уменьшая тем самым усилие на ручке управления.

Этот вид компенсации имеет наибольшее распространение на самолетах всех видов, ввиду его простоты при достаточной эффективности.

Осевая аэродинамическая компенсация рулевых поверхностей

на самолете Як-52 составляет:

на руле направления 4,4 %;

на руле высоты. 18,4 %; на элеронах 13 %.;

на самолете Як-55:

на руле высоты 2,5 %; на руле направления 19,5 %; на элеронах 10 %.

Роговая аэродинамическая компенсация на самолете Як-52 на руле направления составляет 4%, на самолете Як-55: на руле направления-9,4 %; на руле высоты 4,7 %; на элеронах 1,3 %.

При правильно подобранной величине аэродинамической компенсации рулей шарнирный момент рулей не становится равным нулю, а только уменьшается. Однако в длительном полете на каком-либо режиме даже сравнительно небольшое усилие, прикладываемое к ручке управления, весьма утомляет летчика. Поэтому дополнительно на самолете Як-52 установлен аэродинамический триммер, который позволяет регулировать желаемое усилие на ручке управления или полностью снять его.


Рис. 131 Принцип действия аэродинамического триммера


Рис. 132 Зависимость эффективности триммера руля высоты самолета Як-52 от скорости полета

Триммер самолета Як-52 представляет собой небольшую по площади часть руля, шарнирно укрепленную около задней кромки (Рис. 131). Триммер имеет независимое управление. При отклонении его возникает аэродинамический момент, противоположный шарнирному моменту руля.

Летчик по своему желанию может уменьшить или полностью снять усилие на ручке управления.

Большая эффективность триммера на самолете Як-52 при сравнительно небольших размерах объясняется тем, что при отклонении триммера происходит перераспределение давления по всей поверхности руля подобно тому, как отклонение руля изменяет распределение давления на стабилизаторе. На самолете Як-52 триммер установлен только на руле высоты. Его углы отклонения составляют вверх и вниз 12°.

На самолете Як-55 триммер не установлен, ввиду того, что симметричный профиль крыла и стабилизатора, а также применение роговой и осевой аэродинамических компенсаций позволяет значительно уменьшить нагрузку на ручке управления и элеронах при выполнении пилотажа как прямого, так и обратного, а также горизонтального полета в диапазоне рабочих скоростей.

Зависимость эффективности триммера самолета Як-52 (т. е. изменение усилий на ручке управления при отклонении его на 1°) от скорости полета показана на (Рис. 132).

Управление триммером механическое (тросовое). Колесо управления триммером установлено на левом борту передней и задней кабин. В отклоненном положении триммер фиксируется с помощью механизма перестановки триммера в системе управления, который установлен в фюзеляже самолета.

ВЛИЯНИЕ МОМЕНТА ГОРИЗОНТАЛЬНОГО ОПЕРЕНИЯ НА ПРОДОЛЬНУЮ БАЛАНСИРОВКУ

Горизонтальное оперение состоит из стабилизатора и руля высоты, которые представляют собой в целом небольшое крыло, обычно симметричного профиля (Рис. 133).

Рассмотрим горизонтальное оперение самолета Як-52. Под действием встречного потока воздуха оперение развивает подъемную силу Yг.o., которая, действуя на плечо Lг.o., создает момент относительно поперечной оси, равный

где знак минус показывает, что момент пикирующий.

Величина этого момента зависит главным образом от величины подъемной силы оперения, так как плечо Lг.o. можно считать постоянной величиной. Величина подъемной силы Yг.o. зависит от угла атаки горизонтального оперения (за который принимают угол атаки стабилизатора) и от профиля, который меняется при повороте руля высоты. Следовательно, момент горизонтального оперения зависит от угла атаки стабилизатора и угла отклонения руля высоты.

Углом атаки стабилизатора называется угол между хордой стабилизатора и направлением набегающего на него потока. Хорда стабилизатора не параллельна хорде крыла и составляет с ней угол установки стабилизатора jст. Угол между хордой стабилизатора и направлением воздушной скорости самолета будет равен сумме угла атаки крыла к и угла установки стабилизатора и равен . Этот угол называется углом атаки стабилизатора.

Но это еще не полный угол. Под действием крыла воздушный поток отклоняется от своего на правления вниз на некоторый угол , называемый углом скоса потока. Следовательно, угол атаки стабилизатора, т. е. горизонтального оперения, получается путем вычитания угла скоса воздушного потока из угла .


Рис. 133 Момент горизонтального оперения


Рис. 134 Изменение момента горизонтального оперения в зависимости от угла атаки и угла отклонения руля высоты

Учитывая значение полученного угла , рассмотрим, как изменяется подъемная сила горизонтального оперения и ее момент относительно оси Z в зависимости от угла атаки стабилизатора и угла отклонения руля высоты

Когда угол атаки стабилизатора равен нулю, то при нейтральном положении руля высоты (Рис. 134) подъемная сила оперения будет равна нулю и никакого момента не получится.

Если летчик отклонит руль высоты вниз (Рис. 134, а) на некоторый угол (дельта), то это будет равносильно увеличению угла атаки стабилизатора и вызовет появление подъемной силы, направленной вверх, и момент ее будет пикирующим. Если же летчик отклонит руль высоты вверх (Рис. 134, а-2), то это вызовет появление подъемной силы, направленной вниз, и момент ее будет кабрирующим.

Когда угол атаки стабилизатора положительный, то при нейтральном положении руля высоты (Рис. 134, б) подъемная сила будет направлена вверх и момент ее будет пикирующим. Если летчик отклонит руль высоты вниз (Рис. 134, 6-1), то это вызовет увеличение подъемной силы и ее пикирующего момента. Если же летчик отклонит руль высоты вверх (Рис. 134, 6-2), то это вызовет уменьшение подъемной силы и может изменить ее направление и направление ее момента на обратное.

Рассмотрим отрицательный угол атаки стабилизатора. Когда руль высоты находится в нейтральном положении (Рис. 134, в), подъемная сила будет направлена вниз и момент ее будет кабрирующий. Если летчик отклонит руль высоты вниз (Рис. 134, в-2), то это вызовет уменьшение подъемной силы и может изменить направление ее момента на обратное. Если же летчик отклонит руль высоты вверх (Рис. 134, в-2), то это вызовет увеличение отрицательной подъемной силы и ее кабрирующего момента.

Угол установки стабилизатора самолета Як-52 равен = 1 0 30', самолета Як-55 = 0 0 .

ВЛИЯНИЕ МОМЕНТА СИЛОВОЙ УСТАНОВКИ НА ПРОДОЛЬНУЮ БАЛАНСИРОВКУ

Работающая силовая установка винтового самолета с поршневым и турбореактивным двигателями создает продольный момент силы тяги и, кроме того, продольный момент от изменения подъемной силы горизонтального оперения в результате действия на него струи воздушного потока. Поэтому, если в полете самолет находится в продольном равновесии, то при включении двигателя оно будет нарушено вследствие исчезновения указанных моментов. Если же самолет был в равновесии на планировании, то при включении двигателя оно будет также нарушено вследствие появления вышеуказанных моментов.

Если тяга силовой установки проходит вне центра тяжести самолета, т. е. когда имеется децентрация тяги, то будет создаваться продольный момент (Рис. 135, а). Это характерно для самолета Як-52. Направление силы тяги у него проходит выше центра тяжести. Такая децентрация называется верхней. Следовательно, исходя из вышесказанного, можно сделать вывод, что момент будет пикирующим - отрицательным.


Рис. 135 Влияние силовой установки самолета Як 52 на продольное равновесие

Действие воздушной струи от винта на оперение более сложно. Пусть самолет Як-52 планирует и на его горизонтальное оперение набегает воздушный поток (Рис. 135, б) со скоростью V, под углом атаки . В результате этого оперение развивает подъемную силу Yг.o.. При включении двигателя к скорости V добавляется скорость струи воздушного винта V1, причем поток набегает на оперение под меньшим углом атаки  (так как воздушная струя винта увеличивает скос потока у хвостового оперения) Вследствие увеличения скорости подъемная сила оперения должна возрасти, а вследствие уменьшения угла атаки должна уменьшиться В итоге величина подъемной силы заметно не изменится, т е. действие струи воздуха от воздушного винта заметно не нарушит равновесие самолета.

Выше рассматривался случай, когда подъемная сила оперения направлена вверх и, следовательно, создает пикирующий момент. Но современные самолеты, как правило, имеют переднюю центровку, а при передней центровке центр тяжести самолета находится впереди центра давления и фокуса самолета.

Поэтому крыло создает пикирующий момент, следовательно, горизонтальное оперение должно создавать кабрирующий момент, т. е. подъемная сила горизонтального оперения и его угол атаки должны быть отрицательными (Рис. 135, в) Допустим, что в этом случае самолет планирует со скоростью V. При включении двигателя воздушная струя от винта увеличит скорость потока воздуха у горизонтального оперения и скорость станет равной V1. Вследствие увеличения скоса потока угол атаки увеличится

В результате увеличения скорости и угла атаки подъемная сила Yг.o. возрастает до значения Yг.o. и кабрирующий момент горизонтального оперения увеличится.

У самолетов Як-52 и Як-55 действие струи от воздушного винта на горизонтальное оперение создает кабрирующий момент.

Далее рассмотрим действие продольных моментов на балансировку самолета.

Так, например, самолет Як-52 имеет верхнюю децентрацию тяги силовой установки, что приводит к созданию пикирующего момента, который по своему значению больше кабрирующего момента, возникающего от действия струи воздушного винта на горизонтальное оперение. Поэтому при включении двигателя самолет будет стремиться уменьшить угол атаки. Для противодействия этому необходимо создать рулем высоты добавочный кабрирующий момент, т. е. взять ручку управления на себя и так держать ее во время всего полета на данном режиме работы двигателя.

Читайте также: