Чайник это физическое тело или вещество

Обновлено: 17.05.2024

2. Приведите примеры следующих физических тел: а) состоящих из одного и того же вещества; б) состоящих из различных веществ одинакового названия и назначения.
а) Из одного вещества: стол, карандаш, стул — из дерева,
б) Из различных веществ: пластиковая и стеклянная бутылка.

3. Назовите физические тела, которые могут быть сделаны из стекла, резины, древесины, стали, пластмассы.
Стекло: колба лампы, бутылка.
Резина: покрышка, воздушный шарик.
Древесина: дверь, паркет.
Сталь: резец, лезвие ножа.
Пластмасса: корпус шариковой ручки, калькулятора.

4. Укажите вещества, из которых состоят следующие тела: ножницы, стакан, футбольная камера, лопата, карандаш.
Ножницы — сталь; стакан — стекло; футбольная камера — резина; лопата — сталь; карандаш — дерево.

5. Начертите в тетради таблицу и распределите в ней следующие слова: свинец, гром, рельсы, пурга, алюминий, рассвет, буран, Луна, спирт, ножницы, ртуть, снегопад, стол, медь, вертолет, нефть, кипение, метель, выстрел, наводнение.

1. Физические тела. Физические явления

6. Приведите примеры механических явлений.
Механические явления: падение тела, колебание маятника.

7. Приведите примеры тепловых явлений.
Тепловые явления: таяние снега, кипение воды.

8. Приведите примеры звуковых явлений.
Звуковые явления: гром, свист милиционера.

9. Приведите примеры электрических явлений.
Электрические явления: молния, искра свечи зажигания.

10. Приведите примеры магнитных явлений.
Магнитные явления: взаимодействие двух магнитов, вращение стрелки компаса.

11. Приведите примеры световых явлений.
Световые явления: свет лампочки, северное сияние.

12. Предлагаемую ниже таблицу начертите в тетради и впишите слова, относящиеся к механическим, звуковым, тепловым, электрическим, световым явлениям: шар катится, свинец плавится, холодает, слышны раскаты грома, снег тает, звезды мерцают, вода кипит, наступает рассвет, эхо, плывет бревно, маятник часов колеблется, облака движутся, гроза, летит голубь, сверкает молния, шелестит листва, горит электрическая лампа.

1. Физические тела. Физические явления

13. Назовите два-три физических явления, которые наблюдаются при выстреле из пушки.
Полет снаряда, звук выстрела и взрыв пороха.

  • Участник: Коршунова Анастасия Владимировна
  • Руководитель: Ирхина Елена Юрьевна

Аннотация

Мир физических явлений чрезвычайно разнообразен. Физика обладает необыкновенным свойством. Изучая самые простые явления можно вывести общие законы. Многие физические закономерности можно получить из собственных наблюдений. Замечательным местом для наблюдения физических явлений и проведения экспериментов является самая обычная кухня.

Кухня – это место, которое мы посещаем постоянно. Мы даже не задумываемся, что там могут происходить какие-то физические явления. В повседневной жизни мы не найдём другого такого места, где происходило бы столько удивительного и загадочного, как в кухне. Именно здесь мы смешиваем, нагреваем, охлаждаем, замораживаем, размораживаем, а бывает, что и сжигаем всевозможные виды животного, растительного и неорганического сырья. В этом месте происходит множество явлений: световые, тепловые, электрические, электромагнитные и др.

Цель работы: рассмотреть тепловые явления на кухне.

Актуальность работы: работа на кухне не осуществима без тепловых явлений особенно во время технического мира. Время не стоит на месте, люди придумывают все больше техники, а без знаний физики будет невозможен прогресс.

Задачи:

  1. Изучить 3 взаимосвязанных тепловых явлений.
  2. Объяснить их с физической точки зрения.
  3. Исследовать историю открытия явлений.
  4. Найти интересные факты.
  5. Провести анализ полученных данных.

Для начала, что же такое тепловые явления? Тепловые явления – это явления, связанные с нагреванием или охлаждением тел, с изменением температуры. К таким явлениям относятся, например, нагревание и охлаждение воды в емкости, таяние льда, плавление металлов и др. [1] Итак, какие же тепловые явления мы встречаем на кухне? Испарение, кипение, конвекция, теплопроводность, изменение агрегатного состояния веществ – все это тепловые явления. Таким образом, рассмотрим 3 явления. Это конвекция, теплопроводность и кипение.

Конвекция

Конвекция – это вид теплопередачи, при котором внутренняя энергия передается струями и потоками. [3]

Рассмотрим применение конвекции на кухне. Когда мы готовим пищу на плите, то жидкость из холодной превращается в теплую. Почему так происходит? Все дело в том, что здесь проявляется явление конвекция. Жидкость при конвекции нагревается снизу вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются вверх более тяжелыми холодными слоям. Холодные слои жидкости, опустившись вниз, в свою очередь, нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся жидкость равномерно прогревается. Различают два вида конвекции: естественную (или свободную) и вынужденную. Так, нагревание жидкости является примером естественной конвекции. (Рисунок 2) Вынужденная конвекция наблюдается, если перемешивать жидкость мешалкой, ложкой и т.д. Если жидкости прогревать не снизу, а сверху, то конвекция не происходит. Нагретые слои не могут опускаться ниже холодных, более тяжелых. [3]

С явлением конвекции связаны процесс охлаждение продуктов в холодильнике. Газ фреон, циркулирующий по трубкам холодильника, охлаждает воздух в верхней части холодильной камеры. Холодный воздух, опускаясь, охлаждает продукты, а затем снова поднимается вверх. Решетка сзади холодильника предназначается для отвода тепла, образующегося при сжатии газа в компрессоре. Механизм ее охлаждения также конвективный, поэтому надо оставлять пространство за холодильником свободным для конвективных потоков. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов. Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.По этим примерам можно понять, что конвекция играет большую роль на кухне. Она помогает при приготовлении пищи в духовке или просто на плите, сохраняет продукты от жары в холодильнике. Все это помогает поддерживать нормальную функциональную жизнедеятельность людям.

Кипение

Кипение – это интенсивный переход жидкости в пар, происходящий с образованием пузырьков пара по всему объему жидкости при определенной температуре. (Рисунок 3)

Энергия кипения воды широко используется человеком в быту. Данный процесс стал настолько обыденным и привычным, что никто не задумывается о его природе и особенностях. [1] Тем не менее с кипением связан целый ряд интересных фактов:

  1. Наверное, все замечали, что в крышке чайника есть отверстие, но мало кто задумывается о его предназначении. Оно проделывается с той целью, чтобы частично выпускать пар. В противном случае вода может расплескаться через носик.
  2. Продолжительность варки картофеля, яиц и прочих продуктов питания не зависит от того, насколько мощным является нагреватель. Имеет значение лишь тот факт, как долго они находились под воздействием кипящей воды.
  3. На такой показатель, как температура кипения, никак не влияет мощность нагревательного прибора. Она может сказаться лишь на скорости испарения жидкости.
  4. Кипение связано не только с нагреванием воды. При помощи данного процесса можно также заставить жидкость замерзнуть. Так, в процессе кипения нужно производить непрерывную откачку воздуха из сосуда.
  5. Одна из самых актуальных проблем для хозяек заключается в том, что молоко может "убежать". Так, риск этого явления значительно повышается во время ухудшения погоды, которое сопровождается падением атмосферного давления.
  6. Самый горячий кипяток получается в глубоких подземных шахтах.
  7. Путем экспериментальных исследований ученым удалось установить, что на Марсе вода закипает при температуре 45 градусов Цельсия.

Как же происходит этот процесс и от чего он зависит? При нагревании какой-либо жидкости мы увидим ряд особенностей. Прежде всего обратим внимание на то, что с поверхности жидкости происходит испарение. На это указывает туман, образовавшийся над емкость. Это водяной пар смешивается с холодным воздухом и конденсируется в виде маленьких капель. Сам пар, конечно, невидим глазу. При дальнейшем повышении температуры мы заметим появление в жидкости многочисленных мелких пузырьков. Они постепенно увеличиваются в размерах. Это пузырьки воздуха, который растворен в воде. При нагревании воздух выделяется из воды в виде пузырьков. Эти пузырьки содержат не только воздух, но и водяной пар, так как вода испаряется внутрь этих пузырьков воздуха. Поднимающиеся пузырьки, попадая в более холодные слои воды, уменьшаются в размерах, так как содержащиеся в них пары конденсируются и под действием силы тяжести они опускаются. Спустившись вниз, в более горячие слои воды, пузырьки начинают снова подниматься к поверхности. Это попеременное увеличение и уменьшение пузырьков в размерах сопровождается характерным шумом, предшествующим закипанию воды. Постепенно вся вода прогревается, пузырьки уже не уменьшаются в размерах. Под действием архимедовой силы они всплывают на поверхность и лопаются. Находящийся в них насыщенный пар выходит наружу. Шум прекращается, и мы слышим бульканье – жидкость закипела. [3]. Кипение от начала до конца происходит при определенной и постоянной для каждой жидкости температуре. (Таблица 1) Поэтому при варке пищи нужно уменьшать огонь после того, как вода закипит. Это даст экономию топлива, а температура воды все равно сохраняется постоянной во время кипения. [1]

Все выше сказанное дает понять, что если бы не кипение, то можно было нагревать пищу и не узнать когда она приготовилась, или мы просто ели холодную пищу.

Теплопроводность

Теплопроводность – явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте. [2]

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы, так их теплопроводность и прочность выше, чем у других материалов. (Таблица 2) Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается еде. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых еде передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Обычно в кастрюлю на огне наливают в воду, в которую ставят вторую кастрюлю с едой. Температура здесь регулируется благодаря более низкой теплопроводности воды и вследствие того, что температура нагревания внутренней кастрюли не превышает температуры кипения воды, то есть 100° C (212° F). Такой способ часто применяют с продуктами, которые легко пригорают или которые нельзя кипятить, например, шоколад. [4]. Металлы, которые очень хорошо проводят тепло — медь и алюминий. Медь более теплопроводна, но и стоит дороже. Из обоих металлов делают кастрюли, но некоторая еда, особенно кислая, реагирует с этими металлами, и у еды появляется металлический привкус. За такими кастрюлями, особенно за медными, необходим тщательный уход, поэтому на кухне чаще используют более дешевые и удобные в обращении и уходе кастрюли из нержавеющей стали. (Рисунок 4)

Потребности в теплопроводности зависят от способа приготовления пищи и от вкуса и консистенции, которой хочет добиться повар. Например, при варке обычно нужна более низкая теплопроводность, чем при жарке. Теплопроводность регулируют, выбирая разную посуду, а также используя продукты с большим или меньшим содержанием жидкости. Например, количество масла на дне кастрюли или сковородки влияет на теплопроводность, так же, как и общее количество жидкости в продукте. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. [2]. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью. [4]. Материалы с невысокой теплопроводностью также используют для поддержания температуры еды неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них еда остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, еде — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для еды навынос. Таким образом, теплопроводность играет важную роль на кухне. Без нее нельзя было бы даже взять кастрюлю или сковородку в руку, потому что могли обжечься. Также она очень хорошо помогает при выборе посуды. Она дает знать, какой материал будет наиболее пригодный для приготовления той или иной пищи.

Заключение

Итак, мы познакомились с тепловыми явлениями, которые наиболее часто встречаются на кухне: конвекция, теплопроводность и кипение. Каждое из них выполняет определенную роль на кухне. Так с помощью конвекция жидкость вся равномерно прогревается Кипение сообщает, что пища приготовилась и набрала определенную температуру. С помощью теплопроводности можно дольше сохранять тепло (пример термоса), а также выбрать посуду, в которой при приготовлении пищи будет возможность взять руками посуду и не обжечься. Таким образом, я делаю вывод о том, что на кухне без знаний физики не обойтись.

Цель урока : заложить первые представления познаваемости явлений природы даже таких, которые недоступны непосредственному наблюдателю, изучить строение вещества, виды материи и агрегатные состояния вещества, объяснив их на основе молекулярных представлений.

Используемый на уроке материал:

кодоскоп, ОК –1 на пленке, мяч, металлический шарик, спиртовка, перманганат калия, вода, стакан, одеколон, сообщающиеся сосуды, пружина, резиновый шнур, кристаллические решетки: графита и алмаза, набор ОК – 1 для всех учащихся, карточки – задания.

Науку все глубже постигнуть стремись,

Познанием вечного жаждой томись.

Лишь первых познаний блеснет тебе свет,

Узнаешь: предела для знания нет.

(Персидский и таджикский поэт, 940 – 1030 гг).

І. Организационный момент.

ІІ. Проверка знаний.

1 ряд – тест (приложение 1)

2 ряд – устный опрос.

3 ряд – самостоятельная работа (приложение 2)

Вопросы для устного опроса:

* Что такое космос?

* Что такое Вселенная?

* Когда был запущен первый искусственный спутник Земли?

* Для каких целей запускают искусственные спутники Земли?

* Кто был первым космонавтом?

* Название космодрома, с которого был запущен космический корабль с человеком

* Назовите фамилии космонавтов, выходцев из Северо-Казахстанской области.

* Назовите фамилии Казахстанских космонавтов.

* Какую роль играет изучение космического пространства?

ІІІ . Объяснение нового материала.

Физика – это наука о природе. Изучает явления: механические, тепловые, световые, магнитные, электрические. Использует понятия: тело и вещество.

Первый урок мы начнем со слов английского писателя Р. Киплинга:

«…Есть у меня шестерка слуг

И все, что вижу я вокруг –

Все знаю я от них.

Они по знаку моему

Являются в нужде.

Зовут их: Как и Почему,

Кто, Что, Когда и Где.

Я по морям и по лесам

Гоняю верных слуг.

Потом работаю я сам,

В науке же все окружающие предметы: дом, автомобиль, Луну, мяч, и т.д. называют физическим телом. Это все материя.

Один из видов материи называют веществом. Вещество – это то, из чего состоит физическое тело. Алюминий, железо, дерево, вода, соль, воздух – это все вещества.

Работа по ОК – 1 (приложение 3).

Физическое тело имеет определенную форму и объем. Форма и объем тела могут изменяться.

Демонстрации опытов:

* Растяжение резинового шнура.

* Нагревание металлического шарика.

* Нагревание подкрашенной жидкости в колбе.

Для того чтобы ответить, почему изменяются форма или объем тел необходимо выделить малую частицу вещества.

Попытка решения: выделить малую частицу вещества путем его механического дробления.

Можно использовать топор, нож, скальпель, но средства дробления слишком грубы, чтобы выделить одну частицу вещества – носительницу его главного свойства. Но средство приготовила сама природа!

Ежедневное чудо! Тоньше любого скальпеля.

Опыт: бросить кусочек сахара в воду.

Смотрите, сахар исчез.

Нет, не исчез! Сахар в стакане! Ведь сохранилось главное отличительное свойство сахара, хорошо знакомое каждому.

Сахар не исчез, но, тем не менее, никаких частиц не будет видно даже в сильнейший микроскоп. Вывод? Вероятнее всего, существует исключительно малая частица – носитель главного отличительного свойства вещества! Эту частицу называют молекулой.

Вывод: структурной единицей вещества является – молекула.

Сжатие, между молекулами есть промежутки.

Здесь примерно 100 000 000 000 молекул..

Пусть молекула, как точка в конце этой фразы, тогда человек вырастет от Земли до Луны; палец вытянется от Москвы до Владивостока; волос утолщится до 40 метров.

Вывод: молекулы невероятно малы.

Анкета для молекул

2. Назначение в природе: хранитель главного отличительного свойства вещества.

3. Поразительные качества : невероятная малость.

4. Необычные свойства: полная одинаковость с другими представителями того же вещества.

5. Место обитания: любое тело (твердое, жидкое, газообразное)

Представьте, вы дома делаете уроки. Из кухни доносится аппетитный запах жареной картошки…Как это могло произойти? Не доказывает ли распространение запахов существования промежутков между частицами?

О! Да, доказывает, ведь запахи распространяются, потому что между молекулами есть промежутки, и молекулы воздуха перемешиваются с молекулами пахучего вещества.

Самопроизвольное перемешивание веществ при любой температуре называется диффузией.

Явление диффузии доказывает не только то, что между молекулами существуют промежутки, но и то, что они непрерывно и хаотически движутся.

При температуре, приблизительно равной 0 0 С:

Твердые тела жидкости газы

годы недели минуты, секунды

t диффузия быстрее.

* Растворение перманганата калия в воде.

Вывод: молекулы (атомы) непрерывно, беспорядочно движутся.

* Сообщающиеся сосуды, стакан, колба (используются при объяснении агрегатных состояний вещества).

Постановка учебной проблемы:

Попробуйте сломать гвоздь.

В? Почему нельзя сломать гвоздь?

О! Потому что между молекулами существуют силы притяжения.

Попробуйте сжать гвоздь.

В? Почему нельзя сжать гвоздь?

О! Потому что между молекулами существуют силы отталкивания.

Примеры доказательства существования сил притяжения и отталкивания:

* Что произойдет, если асфальт в городах размягчится под палящими лучами солнца?

* Оставим город. На пляж! Вы вылезли из воды, бросились на чистый горячий песок, и песчинки облепили вас со всех сторон. Приятно! Но вы высохли, и почти все песчинки отпали, осыпались. Почему?

* Почему склеиваемые детали рекомендуется крепко прижимать друг к другу?

Потому, что взаимодействие молекул проявляется на расстояниях столь же малых, как и сами молекулы.

Давайте подведем итог (см. ОК – 1, п. 3).

Одно и тоже вещество может находиться в различных агрегатных состояниях.

В? Какие состояния вещества вы знаете?

О? Вещество может находиться в трех состояниях: твердом, жидком и газообразном.

Твердая (лед) Твердое

Вода Жидкая Железо Жидкое

Состояние вещества связано с характером расположения, взаимодействия и движения молекул.

Давайте рассмотрим твердое тело, жидкость, газ и, используя таблицу ОК-1 выясним основные свойства вещества в различных агрегатных состояниях и объясним их на основе положений о строении вещества (работа по ОК- 1) (приложение 3).

Все частицы суетятся, беспорядочно движутся, колеблются, сталкиваются, перемещаются…Разумеется, картина сильно упрощена, масштабы неимоверно нарушены. Такая модель годится для объяснения лишь небольшого количества явлений, происходящих в мире. В дальнейшем мы значительно усовершенствуем эту простейшую модель строения твердых, жидких и газообразных тел. Но если вам хотя бы на секундочку в самой обыденной обстановке, среди самых привычных вещей вдруг удастся ощутить, почувствовать суетливую жизнь этого невидимого, почти фантастического мира невероятно малых частиц вещества… Считайте, что вы прирожденный естествоиспытатель.

ІV. Закрепление по ОК – 1.

V. Домашнее задание: п. 26; ОК – 1, ответить письменно на вопросы после п.26.


В сегодняшней статье порассуждаем о том, что такое физическое тело. Без сомнения, данный термин уже не раз встречался вам за годы школьной учебы. С понятиями "физическое тело", "вещество", "явление" мы впервые сталкиваемся на уроках природоведения. Они являются предметом изучения большинства разделов специальной науки - физики.

Согласно определению, понятие "физическое тело" обозначает определенный материальный объект, обладающий формой и явно выраженной внешней границей, которая отделяет его от внешней среды и прочих тел. Кроме того, физическому телу присущи такие характеристики, как масса и объем. Данные параметры являются базовыми. Но кроме них имеются и другие. Речь идет о прозрачности, плотности, упругости, твердости и т. п.

физические тела это

Физические тела: примеры

Говоря упрощенно, любой из окружающих предметов мы можем назвать физическим телом. Самые привычные их примеры - книга, стол, машина, мяч, чашка. Простым телом физика называет то, чья геометрическая форма несложна. Составные физические тела - это те, что существуют в виде комбинаций скрепленных между собой простых тел. Например, очень условно человеческую фигуру можно представить в виде совокупности цилиндров и шаров.

Материал, из которого состоит любое из тел, именуется веществом. При этом они могут содержать в своем составе как одно, так и ряд веществ. Приведем примеры. Физические тела - столовые приборы (вилки, ложки). Изготовлены они чаще всего из стали. Нож может послужить примером тела, состоящего из двух разных видов веществ - стального лезвия и деревянной рукоятки. А такое сложное изделие, как сотовый телефон, производится из гораздо большего количества "ингредиентов".

Какими бывают вещества

Они могут быть природными и созданными искусственно. В древние времена все необходимые предметы люди изготавливали из натуральных материалов (наконечники стрел - из камней, теплую одежду - из звериных шкур). С развитием технического прогресса появились вещества, созданные человеком. И в настоящее время таковых - большинство. Классическим примером физического тела искусственного происхождения может служить пластик. Каждый его вид создавался человеком с целью обеспечения нужных качеств того или иного предмета. Например, прозрачный пластик - для линз очков, нетоксичный пищевой - для посуды, прочный - для бампера автомобиля.

Любой предмет (от каменного топора до высокотехнологичного устройства) обладает рядом определенных качеств. Одно из свойств физических тел - это их способность притягиваться друг к другу в результате гравитационного взаимодействия. Измеряется оно при помощи физической величины, именуемой массой. По определению физиков, масса тел - это мера их гравитации. Она обозначается символом m.

что такое физическое тело

Измерение массы

Данная физическая величина, как и любая другая, поддается измерению. Чтобы узнать, какова масса любого предмета, нужно сравнить его с эталоном. То есть с телом, масса которого принимается за единицу. Международной системой единиц (СИ) им считается килограмм. Такая "идеальная" единица массы существует в виде цилиндра, представляющего собой сплав иридия и платины. Данный международный образец хранится во Франции, а копии его имеются почти в каждой из стран.

Помимо килограмма используют понятие тонны, грамма или миллиграмма. Измеряют же массу тела взвешиванием. Это классический способ для повседневных расчетов. Но в современной физике есть и другие методы измерений, гораздо более современные и высокоточные. С их помощью определяют массу микрочастиц, а также гигантских объектов.

Другие свойства физических тел

Форма, масса и объем - важнейшие из характеристик. Но существуют и прочие свойства физических тел, каждое из которых важно в определённой ситуации. Например, предметы равного объема могут значительно различаться своей массой, то есть иметь разную плотность. Во многих ситуациях важны такие характеристики, как хрупкость, твердость, упругость или магнитные качества. Не следует забывать о теплопроводности, прозрачности, однородности, электропроводности и прочих многочисленных физических свойствах тел и веществ.

В большинстве случаев все подобные характеристики зависят от тех веществ или материалов, из которых предметы состоят. Например, резиновые, стеклянные и стальные шарики будут обладать абсолютно разными наборами физических качеств. Это имеет значение в ситуациях взаимодействий тел между собой, например изучении степени деформации их при сталкивании.

свойства физических тел

О принятых приближениях

Определенные разделы физики физическое тело рассматривают в качестве некой абстракции, обладающей идеальными характеристиками. Например, в механике тела представляются в виде материальных точек, не имеющих массы и прочих свойств. Данный раздел физики занимается движением таких условных точек, и для решения поставленных здесь задач подобные величины принципиального значения не имеют.

В научных расчетах часто применяется понятие абсолютно твердого тела. Таковым условно считается не подверженное никаким деформациям, с отсутствием смещения центра массы тело. Данная упрощенная модель позволяет теоретически воспроизводить ряд определенных процессов.

Раздел термодинамики в своих целях использует понятие абсолютно черного тела. А это что такое? Физическое тело (некий абстрактный предмет), способное поглощать любые попадающие на его поверхность излучения. При этом, если задача того требует, им могут излучаться электромагнитные волны. Если по условиям теоретических расчетов форма физических тел не принципиальна, по умолчанию считается, что она шарообразная.

Почему свойства тел так важны

Сама физика как таковая произошла от необходимости постичь законы, по которым ведут себя физические тела, а также механизмы существования разнообразных внешних явлений. К природным факторам можно отнести любые изменения в окружающей нас среде, не относящиеся к результатам человеческой деятельности. Многие из них люди используют себе на пользу, но другие могут быть опасными и даже катастрофическими.

Исследование поведения и самых разных свойств физических тел необходимо для людей в целях предсказания неблагоприятных факторов и предупреждения либо уменьшения наносимого ими вреда. Например, строительством волноломов люди привыкли бороться с негативными проявлениями морской стихии. Противостоять землетрясениям человечество научилось разработкой особых сейсмоустойчивых конструкций зданий. Несущие части автомобиля изготавливаются в особой, тщательно выверенной форме для уменьшения повреждений при авариях.

физические тела примеры

О структуре тел

Согласно другому определению, термин "физическое тело" подразумевает всё то, что можно признать реально существующим. Любое из них обязательно занимает часть пространства, а вещества, из которых они состоят, являются совокупностью молекул определённой структуры. Другие, более мелкие частицы его - атомы, но и каждый из них не является чем-либо неделимым и совершенно простым. Строение атома достаточно сложно. В его составе можно выделить положительно и отрицательно заряженные элементарные частицы - ионы.

Структура, согласно которой такие частицы выстраиваются в определённую систему, для твердых тел носит название кристаллической. Любой кристалл обладает определенной, строго фиксированной формой, что говорит об упорядоченном движении и взаимодействии его молекул и атомов. При изменении структуры кристаллов происходит нарушение физических свойств тела. От степени подвижности элементарных составляющих зависит его агрегатное состояние, которое может быть твердым, жидким или газообразным.

Для характеристики данных сложных явлений используется понятие коэффициентов сжатия или объемной упругости, которые являются взаимно обратными величинами.

Движение молекул

Состояние покоя ни атомам, ни молекулам твёрдых тел не присуще. Они находятся в постоянном движении, характер которого зависит от теплового состояния тела, и воздействий, которым оно в данный момент подвергается. Часть элементарных частиц - отрицательно заряженных ионов (именуемых электронами) движется с большей скоростью, чем имеющих положительный заряд.

физика физическое тело

С точки зрения агрегатного состояния, физические тела - это твердые предметы, жидкости или газы, что зависит от характера молекулярного движения. Вся совокупность твердых тел может быть поделена на кристаллические и аморфные. Движение частиц в кристалле признано полностью упорядоченным. В жидкостях молекулы двигаются по совершенно другому принципу. Они переходят из одной группы в другую, что можно образно представить подобно кочующим из одной небесной системы в другую кометам.

В любом из газообразных тел молекулы обладают гораздо более слабой связью, чем в жидких или твердых. Частицы там можно назвать отталкивающимися друг от друга. Упругость физических тел определяется сочетанием двух главных величин - коэффициента сдвига и коэффициента объемной упругости.

Текучесть тел

При всех значительных отличиях твердых и жидких физических тел между собой в свойствах их много общего. Часть из них, именуемых мягкими, занимают промежуточное агрегатное состояние между первыми и вторыми с присущими и тем, и другим физическими свойствами. Такое качество, как текучесть, можно обнаружить в твердом теле (пример - лед или сапожный вар). Присуще оно и металлам, в том числе достаточно твердым. Под давлением большинство из них способно течь подобно жидкости. Соединив и нагрев два твердых куска металла, возможно спаять их в единое целое. Причём процесс спаивания протекает при температуре гораздо более низкой, чем точка плавления каждого из них.

Данный процесс возможен при условии полного соприкосновения обеих частей. Именно таким способом получают различные металлические сплавы. Соответствующее свойство именуют диффузией.

приведите примеры физических тел

О жидкостях и газах

По результатам многочисленных экспериментов ученые пришли к следующему выводу: твёрдые физические тела - это не какая-то обособленная группа. Различие между ними и жидкими состоит лишь в большем внутреннем трении. Переход веществ в разные состояния происходит в условиях определённой температуры.

Газы отличаются от жидкостей и твердых тел тем, что увеличения силы упругости даже при сильном изменении объёма в них не происходит. Различие между жидкостями и твердыми телами - в возникновении упругих сил в твердых телах при сдвиге, то есть изменении формы. Данного явления не наблюдается в жидкостях, которые могут принять любую из форм.

Кристаллические и аморфные

Как уже упоминалось, два возможных состояния твердых тел - аморфное и кристаллическое. К аморфным относятся тела, обладающие одинаковыми физическими свойствами по всем направлениям. Данное качество именуются изотропностью. В качестве примера можно привести затвердевшую смолу, изделия из янтаря, стекло. Их изотропность - результат беспорядочного расположения молекул и атомов в составе вещества.

В кристаллическом состоянии элементарные частицы расположены в строгом порядке и существуют в виде внутренней структуры, периодически повторяющейся в разных направлениях. Физические свойства таких тел отличаются, но в параллельных направлениях они совпадают. Такое свойство, присущее кристаллам, именуют анизотропностью. Ее причина - неодинаковая сила взаимодействия между молекулами и атомами в разных направлениях.

термин физическое тело

Моно- и поликристаллы

У монокристаллов внутренняя структура однородная и повторяется во всем объеме. Поликристаллы выглядят как множество хаотично сросшихся друг с другом небольших кристаллитов. Составляющие их частицы располагаются на строго определённом расстоянии друг от друга и в нужном порядке. Под кристаллической решеткой понимается совокупность узлов, то есть точек, служащих центрами молекул либо атомов. Металлы с кристаллической структурой служат материалом для каркасов мостов, зданий и других прочных конструкций. Именно потому свойства кристаллических тел тщательно изучаются в практических целях.

На реальные характеристики прочности оказывают негативное воздействие дефекты кристаллической решетки, как поверхностные, так и внутренние. Подобным свойствам твёрдых тел посвящен отдельный раздел физики, именуемый механикой твердого тела.

Читайте также: