Чему равна кратность пускового момента коллекторных двигателей мясорубок

Обновлено: 18.05.2024

Магнитопровод (сердечник) однофазного электрического двигателя имеет двухфазную статорную, вызывающую вращение ротора обмотку, состоящую из:

  • основной (рабочей) обмотки, создающей магнитное поле и работающей постоянно;
  • вспомогательной (пусковой) обмотки, создающей необходимый пусковой момент и включающейся только на достаточно короткое время пуска двигателя.

Вспомогательная обмотка занимает, как правило, третью часть пазов статора.

Характеристики пусковой обмотки

По сравнению с рабочей, пусковая обмотка обладает меньшим сечением токопроводящего проводника, обусловленного меньшей нагрузкой и количеством витков.

Следовательно, во вспомогательной обмотке имеет место большее активное сопротивление (токовая плотность), как правило, порядка 30 Ом при сопротивлении рабочей обмотки 10-13 Ом.

Иногда обмотки можно классифицировать чисто визуально или, при необходимости, произвести замеры активных сопротивлений.

Пусковая обмотка подключается в момент пуска однофазного двигателя через конденсатор и отключается после достижения ротором двигателя необходимой скорости вращения, продолжив дальнейшее вращение на рабочей обмотке.

В зависимости от способа создания пускового момента и использования конденсатора, однофазные электрические двигатели можно сгруппировать следующим образом:

  • конденсаторные — двигатели с рабочим, постоянно подключенным к пусковой обмотке конденсатором, ёмкость которого указана на клейме агрегата;
  • двигатели с расщеплённой фазой — двигатели с пусковым конденсатором, который взаимодействует со вспомогательной обмоткой только в короткий момент пуска.

Маркировка выводов вспомогательной (пусковой) обмотки: начало – П1, конец обмотки – П2 (основной: начало – Р1 или С1, конец обмотки – Р2 или С2).

Принцип работы и конструкции пусковой обмотки

Отключение вспомогательной (пусковой) обмотки выполняется за счёт падения пускового тока до значения, недостаточного для удержания сердечника, — происходит обесточивание пусковой обмотки.

При помощи конденсатора (или в некоторых, более редких случаях индуктивности), фаза пусковой обмотки сдвигается на 90°.

Время нахождения обмотки под пусковым током в несколько раз превышающим номинальный, во избежание перегрева и выхода двигателя из строя, должно быть строго регламентировано.

Механический разрыв цепи и отключение пусковой обмотки может осуществлять реле максимального тока, тепловое биметаллическое реле или центробежный или кнопочный выключатель, который необходимо удерживать в нажатом положении на момент запуска электрического двигателя.

Как определить пусковую обмотку однофазного двигателя?

…если на проводах отсутствует цветовая или цифровая маркировка.

В зависимости от количества выводов клеммной коробки электрического двигателя, возможны два конструктивно различающихся случая:

  • для четырёх выводов: меньшее активное сопротивление концов обмоток после замера укажет на рабочую (основную) обмотку, большее – на пусковую (вспомогательную);
  • для трех выводов производятся три замера концов обмоток: меньшее сопротивление укажет на основную обмотку, среднее по значению – на пусковую, а большее будет суммой активных сопротивлений основной и пусковой обмоток.

Для инверсии направления вращения однофазного двигателя следует поменять местами концы обмоток любой из статорных фаз.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.





Применение

Питание трёхфазного двигателя от однофазной электрической сети
Промышленные конденсаторные двигатели имеют в основе, как правило, двухфазный двигатель (проще производство и схема подключения). Трёхфазные двигатели переделываются под однофазную сеть обычно в частном порядке или мелкосерийном производстве в силу массовости таких типов двигателей и сетей, выбирая при этом между сложностью схемы и недоиспользованием мощности двигателя.

Такие двигатели используются в основном в бытовой технике малой мощности: стиральных машинах, механизмах и стационарных кассетных магнитофонов, недорогих проигрывателях виниловых дисков, вентиляторах и другой подобной технике.

Также такие двигатели применяются в циркуляционных насосах водопроводных и отопительных систем (напр. компании Grundfos

), и в воздуходувках и дымососах отопительных и водонагревательных агрегатов (напр.
Buderus
).

Трёхфазные асинхронные двигатели в однофазную электрическую сеть включают через фазосдвигающий конденсатор.

U — напряжение сети, вольт;

I — рабочий ток двигателя, ампер;

C — электрическая ёмкость, микрофарад.

Переключатель B2> позволяет изменять направление вращения электродвигателя. Выключатель B1> отключает электродвигатель.

Используя паспортные данные электродвигателя, можно определить его рабочий ток I по формуле:

P — электрическая мощность двигателя, Ватт;

U — напряжение сети, вольт;

η — коэффициент полезного действия;


Как определить рабочую и пусковую обмотки

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно.

Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.

Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее, а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное.

Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все очень просто, на толстые провода подается 220в.

И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом, 10 ом , 20 ом. Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь.

В этих движках, рабочая и пусковая – однообразные обмотки ( по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор.

Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Однофазный асинхронный электродвигатель

Основными компонентами любого электродвигателя являются ротор и статор. Ротор – вращающаяся часть электродвигателя, статор – неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.




Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.










Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Советуем изучить — Продольная компенсация реактивной мощности — физический смысл и техническая реализация

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц.

Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт.

На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя.

Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы.

В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.







Сфера практического применения

Конденсаторные асинхронные электродвигатели используются в бытовых электровентиляторах, холодильниках, некоторых современных стиральных машинах, практически во всех стиральных машинах производства СССР. Но в вытяжках чаще применяются двигатели с расщепленными полюсами без конденсатора, тем не менее, можно встретить модели и с рассматриваемым типом электродвигателя.

Кроме бытовой техники их сфера применения распространяется и на насосы мощностью до 2-3 кВт, компрессоры и различные станки с однофазным питанием, в общем, на все, что должно вращаться и работать от 220 Вольт.

Вот мы и рассмотрели, что такое конденсаторный двигатель, как он устроен и для чего нужен. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Магнитопровод (сердечник) однофазного электрического двигателя имеет двухфазную статорную, вызывающую вращение ротора обмотку, состоящую из:

  • основной (рабочей) обмотки, создающей магнитное поле и работающей постоянно;
  • вспомогательной (пусковой) обмотки, создающей необходимый пусковой момент и включающейся только на достаточно короткое время пуска двигателя.

Вспомогательная обмотка занимает, как правило, третью часть пазов статора.

Характеристики пусковой обмотки

По сравнению с рабочей, пусковая обмотка обладает меньшим сечением токопроводящего проводника, обусловленного меньшей нагрузкой и количеством витков.

Следовательно, во вспомогательной обмотке имеет место большее активное сопротивление (токовая плотность), как правило, порядка 30 Ом при сопротивлении рабочей обмотки 10-13 Ом.

Иногда обмотки можно классифицировать чисто визуально или, при необходимости, произвести замеры активных сопротивлений.

Пусковая обмотка подключается в момент пуска однофазного двигателя через конденсатор и отключается после достижения ротором двигателя необходимой скорости вращения, продолжив дальнейшее вращение на рабочей обмотке.

В зависимости от способа создания пускового момента и использования конденсатора, однофазные электрические двигатели можно сгруппировать следующим образом:

  • конденсаторные — двигатели с рабочим, постоянно подключенным к пусковой обмотке конденсатором, ёмкость которого указана на клейме агрегата;
  • двигатели с расщеплённой фазой — двигатели с пусковым конденсатором, который взаимодействует со вспомогательной обмоткой только в короткий момент пуска.

Маркировка выводов вспомогательной (пусковой) обмотки: начало – П1, конец обмотки – П2 (основной: начало – Р1 или С1, конец обмотки – Р2 или С2).

Принцип работы и конструкции пусковой обмотки

Отключение вспомогательной (пусковой) обмотки выполняется за счёт падения пускового тока до значения, недостаточного для удержания сердечника, — происходит обесточивание пусковой обмотки.

При помощи конденсатора (или в некоторых, более редких случаях индуктивности), фаза пусковой обмотки сдвигается на 90°.

Время нахождения обмотки под пусковым током в несколько раз превышающим номинальный, во избежание перегрева и выхода двигателя из строя, должно быть строго регламентировано.

Механический разрыв цепи и отключение пусковой обмотки может осуществлять реле максимального тока, тепловое биметаллическое реле или центробежный или кнопочный выключатель, который необходимо удерживать в нажатом положении на момент запуска электрического двигателя.

Как определить пусковую обмотку однофазного двигателя?

…если на проводах отсутствует цветовая или цифровая маркировка.

В зависимости от количества выводов клеммной коробки электрического двигателя, возможны два конструктивно различающихся случая:

  • для четырёх выводов: меньшее активное сопротивление концов обмоток после замера укажет на рабочую (основную) обмотку, большее – на пусковую (вспомогательную);
  • для трех выводов производятся три замера концов обмоток: меньшее сопротивление укажет на основную обмотку, среднее по значению – на пусковую, а большее будет суммой активных сопротивлений основной и пусковой обмоток.

Для инверсии направления вращения однофазного двигателя следует поменять местами концы обмоток любой из статорных фаз.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.





Применение

Питание трёхфазного двигателя от однофазной электрической сети
Промышленные конденсаторные двигатели имеют в основе, как правило, двухфазный двигатель (проще производство и схема подключения). Трёхфазные двигатели переделываются под однофазную сеть обычно в частном порядке или мелкосерийном производстве в силу массовости таких типов двигателей и сетей, выбирая при этом между сложностью схемы и недоиспользованием мощности двигателя.

Такие двигатели используются в основном в бытовой технике малой мощности: стиральных машинах, механизмах и стационарных кассетных магнитофонов, недорогих проигрывателях виниловых дисков, вентиляторах и другой подобной технике.

Также такие двигатели применяются в циркуляционных насосах водопроводных и отопительных систем (напр. компании Grundfos

), и в воздуходувках и дымососах отопительных и водонагревательных агрегатов (напр.
Buderus
).

Трёхфазные асинхронные двигатели в однофазную электрическую сеть включают через фазосдвигающий конденсатор.

U — напряжение сети, вольт;

I — рабочий ток двигателя, ампер;

C — электрическая ёмкость, микрофарад.

Переключатель B2> позволяет изменять направление вращения электродвигателя. Выключатель B1> отключает электродвигатель.

Используя паспортные данные электродвигателя, можно определить его рабочий ток I по формуле:

P — электрическая мощность двигателя, Ватт;

U — напряжение сети, вольт;

η — коэффициент полезного действия;


Как определить рабочую и пусковую обмотки

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно.

Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.

Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее, а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное.

Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все очень просто, на толстые провода подается 220в.

И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом, 10 ом , 20 ом. Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь.

В этих движках, рабочая и пусковая – однообразные обмотки ( по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор.

Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Однофазный асинхронный электродвигатель

Основными компонентами любого электродвигателя являются ротор и статор. Ротор – вращающаяся часть электродвигателя, статор – неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.




Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.










Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Советуем изучить — Продольная компенсация реактивной мощности — физический смысл и техническая реализация

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц.

Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт.

На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Такой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя.

Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы.

В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.







Сфера практического применения

Конденсаторные асинхронные электродвигатели используются в бытовых электровентиляторах, холодильниках, некоторых современных стиральных машинах, практически во всех стиральных машинах производства СССР. Но в вытяжках чаще применяются двигатели с расщепленными полюсами без конденсатора, тем не менее, можно встретить модели и с рассматриваемым типом электродвигателя.

Кроме бытовой техники их сфера применения распространяется и на насосы мощностью до 2-3 кВт, компрессоры и различные станки с однофазным питанием, в общем, на все, что должно вращаться и работать от 220 Вольт.

Вот мы и рассмотрели, что такое конденсаторный двигатель, как он устроен и для чего нужен. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Расчет пускового момента

Пусковой момент, который зависит от номинального усилия на валу и кратности пускового момента, можно вычислить по формуле:

  • Мн — номинальное усилие на валу электродвигателя;
  • Кпуск.— кратность пусков, паспортная величина, которая принимает значения от 1,5 до 6.

На практике применяют другую формулу:

Необходимые данные указываются на шильдике двигателя или в паспорте, где F1 — номинальные обороты.

Р2 равна номинальной мощности в кВт, является расчетной величиной.

Для того, чтобы узнать значение Р2, следует воспользоваться формулой, в которой учитываются пусковой ток, напряжение сети, скольжение. Эти данные можно узнать в паспорте, справочнике или на сайте завода-изготовителя.

Методы увеличения Мпуск

Из формулы видно, от чего зависит пусковой момент асинхронного двигателя и как увеличить его, изменяя параметры. Он зависит от мощности трехфазного двигателя и величины скольжения.

Мощность определяется по формуле, корень из 3 умноженный на напряжение и ток. Скольжение изменяет свое значение в зависимости от оборотов вала механизма. При оборотах двигателя равных нулю, скольжение принимает значение равное 1.

При разгоне электродвигателя оно уменьшается и стремится к нулю при достижении номинальных оборотов ротора. Для того чтобы увеличить пусковой момент, достаточно увеличить пусковой ток или питающее напряжение. Величину скольжения изменить нельзя.

Для примера приведем расчет пускового момента, используя паспортные данные некоторых двигателей. Результат сведен в нижеприведенную таблицу:

Паспортные данные двигателей

При этом следует помнить, что использование электродвигателя в механизмах с пусковым моментом, превышающим усилие двигателя на валу – недопустимо. В этом случае электродвигатель не сможет преодолеть потери в двигателе и тормозной момент механизма. Он просто выйдет из строя. Т.е. усилие электродвигателя недостаточно для нормальной работы устройства.

Схемы включения асинхронного двигателя

Для уменьшения воздействия пусковых токов применяются различные схемы включения. Это зависит от механизма и мощности электродвигателя.

Типовое включение двигателя осуществляется напрямую. Напряжение на обмотки подается через магнитный пускатель.

Во время пуска в сети возникает бросок тока, который превышает номинальный в 5-7 раз. Длительность зависит от мощности электродвигателя и нагрузки на валу. Чем мощнее устройство, тем длительнее период разгона.

В результате возникает понижение напряжения в сети, что отрицательно сказывается на аппаратуре, подключенной к этой цепи. Маломощные не оказывают существенного влияния на сети.

На графике снизу представлена зависимость тока от времени разгона электродвигателя:

Зависимость тока от времени разгона электродвигателя

При запуске мощного электропривода 10 и более кВт следует ограничивать пусковой ток. Это необходимо, чтобы сети не испытывали значительные перегрузки, в результате, которой происходит понижение напряжения сети, что приводит к нештатной ситуации.

Для этого применяются схемы переключения с треугольника на звезду, используются токоограничивающие устройства или частотные преобразователи.

Способы снижения пусковых токов АД

Уменьшить пусковые токи асинхронного двигателя можно несколькими способами. Перечислим их по порядку.

Наиболее распространенным методом, является запуск двигателя при пониженном напряжении. Для чего коммутируют обмотки асинхронного двигателя. В начальный момент пуска, обмотки переключают с треугольника на звезду. После набора оборотов коммутацию возвращают в первоначальное положение. При этом следует учитывать, что пусковой момент при таком запуске уменьшается. Например, при снижении напряжения в 1,72 (корень квадратный из 3) раза, момент уменьшится в три раза. Такой метод применяется при запуске механизмов с минимальной нагрузкой на валу, где установлены асинхронные электродвигатели с короткозамкнутым ротором.

Так же ограничение токов во время запуска двигателя осуществляют включением последовательно с обмотками статора индукционных сопротивлений. В некоторых случаях для этих целей используются резисторы. После выхода двигателя на оптимальные режимы, резисторы шунтируются.

На рисунке снизу показаны варианты запуска при пониженном напряжении:

Пуск при пониженном напряжении

Пуск при пониженном напряжении

При уменьшении нагрузки на валу можно регулировать пусковые токи. В первоначальный промежуток времени подключается часть нагрузки. После достижения оптимальных оборотов, подается полная нагрузка.

Для мощных устройств применяют реостатный запуск. Такой пуск используют для приводов укомплектованных асинхронными электродвигателями с фазным ротором. Регулировка производится ступенчато, т.е. резисторы отключаются постепенно с набором скорости вращения. Таким образом обеспечивается плавный пуск.

На рисунке снизу представлена принципиальная схема запуска:

Схема управления пуском АД с фазным ротором

График токов при прямом и плавном пуске электропривода:

Пуск АД с фазным ротором

Наиболее щадящий запуск механизмов обеспечивает пуск с помощью частотного преобразователя. В этом случае частотный преобразователь самостоятельно выбирает оптимальные режимы. При этом можно увеличить пусковой момент, не повышая нагрузку на сети. Использование частотного преобразователя полностью исключаются нежелательные броски тока в сети.

Вот и были рассмотрены способы увеличения пускового момента асинхронного двигателя, а также правильный его расчет. Если остались вопросы, задавайте их в комментариях под статьей!

Коллекторные двигатели постоянного тока применяют в приводах, требующих плавного регулирования скорости в широком диапазоне. При этом важно обеспечить безопасный пуск электрической машины. С этой целью изменяют параметры напряжения или сопротивления роторных цепей мотора.

Электрические приводы с сетевым питанием постоянного тока применяются как генераторы или двигатели. Наибольшее распространение получили электромоторы, способные работать с нагрузками до нескольких тысяч киловатт. К этому типу электрооборудования относятся коллекторные, вентильные и универсальные приводы. Каждый из них обладает своими конструктивными и техническими особенностями, обуславливающими их применение. О коллекторном электродвигателе: его устройстве, принципе работы и режиме пуска будет рассказано в этой статье.

Основные конструктивные элементы

Коллекторная электрическая машина представляет собой оборудование, в котором датчиком углового положения вала и переключателем токовой нагрузки в электроцепях является одно и то же устройство, называемое щёточно-коллекторный узел. Общая структурная схема любого коллекторного двигателя (КД) схожа с другими типами электромоторов. Неподвижную часть называют статором/индуктором/индукторным колесом, подвижную/вращающуюся – ротором/якорем. Структура привода представлена на рисунке:


Статор содержит станину (опорную часть) и главные полюсы. Опорная конструкция служит для фиксации полюсов и щитов шарикоподшипников. Служит компонентом магнитопровода, поскольку является звеном, через который замыкается магнитный поток приводного оборудования. Опорная часть изготавливается из металла, является исключительно прочной и магнитнопроницаемой. Имеет в нижней части опоры, а по окружности специальные отверстия для закрепления сердечников главных полюсов. Как правило, это цельный элемент. Разъемное конструктивное исполнение реализовывается для вариантов с больших габаритов. Это облегчает транспортирование, сборку, обслуживание и ремонт.

Главные полюсы, выполняющие формирование магнитного потока, содержат сердечник и полюсную катушку с намотанным проводом. Со стороны роторного узла сердечник имеет специальный наконечник, распределяющий магнитную индукцию во внутреннем пространстве КД. Сердечники изготавливают из листовой стали. В электродвигателях 220в малой мощности формируют бескаркасные полюса, с непосредственной намоткой электропроводника на предизолированный сердечник. В электромашинах мощностью более одного киловатта катушка представляет собой каркас с намотанным на него проводом.

Структурная схема якорного механизма предусматривает следующие элементы:

  • вал;
  • сердечник с электрообмоткой;
  • коллекторный узел.

Сердечник выполнен в виде шихтованного изделия, набирается из стальных изолированных лаком пластин, которые собирают в единый пакет, запекают и запрессовывают на вал. Подобное решение позволяет снизить вихревые токовые потоки, формирующиеся при вращении в магнитном пространстве. В наружные пазы якорного узла укладывают обмотку, выполненную из медного провода.

Коллекторное устройство – один из ключевых и сложных конструктивных узлов КД. Состоит из медных трапециевидных пластин, собранных в цилиндрическую форму. В зависимости от метода крепления металлических элементов коллекторы могут быть со стальными конусной формы шайбами или на пластмассе (для маломощных эл/машин). Для обеспечения электрического контакта с коллекторным узлом в специальных щеткодержателях размещают щетки с гибким тросиком, осуществляющим включение щеток в электрическую цепь. Для стабильной работы электропривода обеспечивают постоянный надежный контакт между щеточным элементом и коллектором.

Принцип действия

Работа коллекторного двигателя обеспечивается щеточно-коллекторным узлом (ЩКУ). Это связующее звено между электроцепью ротора и наружной питающей сетью. Фактически ЩКУ выполняет функции механического преобразователя переменного токового значения в постоянное и наоборот. Несмотря на то, что КД относятся к устройствам постоянного тока, для их функционирования необходимо наличие переменной токовой величины в роторной электроцепи. Являясь главной функциональной частью мотора, ЩКУ значительно усложняет его конструкцию по сравнению с бесколлекторными приводами. Соответственно, эти типы моторов уступают в надежности и требуют больших затрат на изготовление.

Преобразование, обеспечиваемое ЩКУ, необходимо для того, чтобы в якорной обмотке протекал переменный ток. Только в этом случае происходит непрерывный процесс электромеханического преобразования энергии. Напряжение от источника постоянного тока подводят к щеткам привода. В результате его контакта с магнитным полем статора появляются электромагнитные силы (ЭМС) Fэм , создающие на роторе электромагнитный момент М . Как результат, якорь начинает вращаться. После его поворота на 180 градусов ЭМС не изменят своего направления. Это связано с тем, что одновременно с переходом каждого проводника обмотки ротора из области одного магнитного полюса в область другого в проводниках меняется направление токового потока.

Схема внутреннего взаимодействия всех элементов ЩКУ представлена в виде упрощенной модели:


В зоне геометрической нейтрали nn’ – середине межполюсной области – магнитная индукция и, соответственно, ЭМС равны нулю. Но с увеличением числа проводников в роторной обмотке, а именно при их равномерном распределении, и увеличением количества пластин коллектора момент вращения становится устойчивым и равномерным.

Рабочий цикл и его характеристики

Полный рабочий цикл любого электропривода можно разделить на четыре технологических этапа:

  • пуск, в течение которого скорость вращения вала/якоря увеличивается от нуля до требуемого показателя;
  • рабочий, во время которого мотор работает при неизменном напряжении на зажимах роторной цепи и электроцепи возбуждения;
  • регулирования, когда осуществляется воздействие на внутренние цепи (якорного блока или возбуждения) с целью изменения оборотов вала;
  • остановки, характеризуемой снижением скорости до нуля.

Согласно приведенной структуре цикла выделяют пусковые, рабочие, регулировочные и тормозные характеристики. Стартовый этап рассматривают относительно параметров пускового момента, тока, продолжительности процесса, стоимости дополнительных устройств и затрат электроэнергии. При этом обеспечивают максимально плавный пуск коллекторного мотора. Основными характеристиками механической энергии эл/двигателя являются вращающий момент и скорость вращения.

Рабочий период оценивается совокупностью зависимостей, включая частоту оборотов вала, токовых параметров привода в роторной электроцепи, полезного вращающего момента, КПД от полезной мощности КД при неизменном напряжении питания и токе в обмотке возбуждения. Регулировочные характеристики определяются пределами, ступенями и способом изменения скоростных параметров. Возможность плавного регулирования оборотов электрической машины в широком диапазоне является одним из самых ценных качеств этой категории электрооборудования. Тормозной режим роторного механизма при отключении питания происходит за счет сил трения. Для ускорения остановки мощных эл/машин реализуют один из способов торможения посредством создания тормозного момента, направленного против вращения якоря.

Пуск и его характеристики

Свойства электрических приводов определяются всеми четырьмя перечисленными выше группами характеристик: пусковыми, рабочими, механическими и регулировочными. Пусковые определяют работу эл/привода от включения до перехода к установившемуся режиму работы. При запуске коллекторного двигателя необходимо обеспечить выполнение следующих условий:

  • стартовый момент КД должен быть больше моментной величины статической нагрузки; в случае их равенства разгон прекращается;
  • максимальная токовая нагрузка и моментная величина на старте должны находиться в диапазоне допустимых пределов.

В соответствии с условиями работы щеточного контакта допустимое токовое значение составляет 2,5 IN – для приводов мощностью до 5 кВт и 1,5-2,0 IN – для более мощных эл/моторов. Согласно ограничениям питающей сети или ускорений механизма, допустимые показатели тока и момента могут быть еще более снижены. Но чрезмерно малое значение стартовых величин также нежелательно по причине снижения начального момента и затягивания процесса разгона.

Любой запуск начинается с режима короткого замыкания, при котором роторная обмотка включена в сеть, а сам вал неподвижен. То есть электродвижущая сила равна нулю. В этом случае токовый показатель цепи якорного механизма определяется в соответствии с законом Ома:

Из приведенного выше уравнения следует, что плавный пуск коллекторного мотора осуществляется или снижением напряжения на обмотке якоря, или увеличением эл/сопротивления. При сетевом питании применяют включение пускового сопротивления. Для этого в электроцепь якоря вводят внешнее эл/сопротивление Rпр в виде резистора, что выражается формулой:

Iкз = U/(Rпр + ∑r).

Параметры Rпр подбирают таким образом, чтобы Iкз не превысил допустимых токовых величин. Выбранное эл/сопротивление удовлетворяет условиям только начального пуска. Как только ротор начинает вращаться, в его электроцепях индуцируется ЭДС, ограничивающая токовый параметр ротора. Одновременно это вызывает уменьшение начального момента. Поэтому принимают меры для уменьшения Rпр путем включения резистора переменного эл/сопротивления, называемого пусковым реостатом. Реостат имеет ступенчатую регулировку и позволяет изменять эту характеристику от максимального до минимального значения.


Запуск электроприводов мощностью 0,7-1,0 кВт при условии их включения без нагрузки осуществляют непосредственным включением в сеть. Безреостатный старт для маломощного электрооборудования опасности не представляет. Это объясняется относительно невысоким стартовым током, который благодаря повышенному эл/сопротивлению роторной обмотки и небольшим вращающимся массам превышает номинальный параметр в три-пять раз. К тому же продолжительность разгона такого типа мотора также невелика и действие Iкз кратковременно.

Процесс плавного пуска

Мягкий пуск КД с минимальным временем обеспечивают посредством многоступенчатого пускового процесса. Количество ступеней допустимо выбирать произвольно. Оптимальным числом циклических этапов считается не более пяти. При резком уменьшении сопротивления происходит значительный бросок Iкз, что может привести к нарушению коммутации. Для обеспечения запуска принимают во внимание одно из допустимых критических значений пускового момента – максимальное или минимальное, то есть:

Мп мин = (1,2–1,5) Мс ; Мп макс ≤ Мдоп.


Каждому этапу соответствует собственная характеристика. Плавный пуск коллекторного электропривода производится следующим образом. При подаче электропитания на КД бросок моментной величины достигает допустимого максимума. Начинает набор скорости по первой характеристике. После достижения минимального значения момента машина переключается, часть электросопротивления выводится из якорной цепи (шунтируется).

На следующей циклической ступени моментную величину снова увеличивают до максимального параметра, а при его уменьшении до минимума электродвигатель опять переключается, и очередная часть сопротивления шунтируется. Этот процесс повторяется до тех пор, пока электропривод не разгонится до рабочих оборотов. Для того, чтобы исключить превышение допустимых моментных пределов, необходимо правильно рассчитать эл/сопротивление.

Старт и управление электроприводом в производственных условиях часто автоматизируют. Переключение ступеней реостата осуществляется контакторами, которые своими контактами по мере разгона мотора шунтируют элементы реостата при переключении ступеней резистора. Для управления скоростью эл/привода применяют частотные преобразователи, сервоприводы, а для сложных приводных систем используют логические программируемые контроллеры. Выбор того или иного способа управления зависит от задачи, которую должен выполнять электропривод.

Способы мягкого старта

Рассмотренный выше плавный пуск коллекторного мотора относится к классическому реостатному методу, подходящему как для постоянного, так и переменного тока. Его отрицательные стороны заключаются в потере значительной части мощности на нагрев сопротивления реостата и громоздкости устройства. Поэтому такой способ практически и экономически оправдан только для запуска эл/привода, но не регулирования рабочих параметров скорости. В общем случае запуск приводных устройств и электроинструментов может выполняться и другими методами с применением:

  • трансформаторов;
  • полупроводниковых ключей.

Использование трансформаторов допустимо только для объектов переменного тока. Его преимущество состоит в повышенной электрической безопасности при работе с электроинструментом. Минус такого метода заключается в достаточно больших размерах и стоимости, даже при самостоятельном изготовлении.

Применение полупроводниковых ключей – самый современный и недорогой способ плавного старта. Их основная особенность заключается в отсутствии механических контактов и высокой скорости переключения. Силовые ключи способны работать с большими токовыми нагрузками и напряжением. Они практически не нагреваются, потребляют минимум электроэнергии и являются лучшим вариантом для электродвигателей современных электрических инструментов. Существует три типа силовых ключей:

  • тиристоры и симисторы;
  • полевые транзисторы MOSFET с изолированным МОП затвором;
  • транзисторы IGBT.

Тиристоры и симисторы предназначены для регулирования мощности в цепях с переменными токовыми значениями. Мощные полевые транзисторы MOSFET управляют параметрами сетевого тока изменением ширины открывающихся импульсов. Этот тип устройств находит свое применение при электропитании постоянным током. Для инструмента с большой мощностью применяют биполярные транзисторы IGBT с изолированным затвором.

Читайте также: