Как определить мощность конденсатора холодильника

Обновлено: 17.05.2024

Фреоновые парокомпрессорные холодильные установки с воздушными конденсаторами получили широкое распространение в коммерческом и промышленном холоде.

Чтобы обеспечить работоспособность таких установок в период действия высоких температур наружного воздуха, необходимо не только правильно рассчитать мощность конденсатора, но и подобрать его для корректно выбранной температуры наружного воздуха.

Сознательное занижение расчетной температуры наружного воздуха, принимаемой для подбора воздушного конденсатора, приводит, естественно, к снижению стоимости холодильного оборудования и возможности выиграть тендер на поставку и монтаж.

Однако, это чревато далеко идущими последствиями, начиная от несоблюдения указанных в техническом задании температурных режимов в холодильных и технологических камерах, и заканчивая отказами в работе оборудования по причине срабатывания предохранительных устройств при высоких температурах наружного воздуха.

Поэтому к выбору расчетной температуры наружного воздуха при проектировании холодильных установок следует подходить с особой тщательностью.

Как показывает практика, чаще всего воздушные конденсаторы работают в наиболее неблагоприятных условиях, так как их преимущественно устанавливают на стороне здания, в течение длительного времени облучаемой солнцем, или на плоской кровле.

В современных нормативных документах, связанных с холодильной техникой, расчетные параметры наружного воздуха для подбора холодильного оборудования, и в том числе воздушных конденсаторов, никак не регламентируются.

п.9.17. Параметры наружного воздуха для расчета конденсаторов с воздушным охлаждением … следует принимать с учетом места их размещения (в тени, на солнце, на плоской кровле вблизи крыш или стен и др.), но не менее расчетных параметров наружного воздуха для обслуживаемых систем.

Но конкретные рекомендации в нормативном документе не были приведены.

Рассматривались три основных случая размещения чиллера с воздушным конденсатором: в тени, на стороне здания, облучаемой солнцем, и на плоской кровле.

Автором была применена следующая формула для определения расчетной температуры наружного воздуха:

где tР — расчетная температура наружного воздуха для подбора воздушного конденсатора,

Δt — увеличение температуры в зависимости от места установки, определяемое по следующей таблице [3].

Исходными данными для расчета являются: тепловая нагрузка на конденсатор, температура конденсации хладагента Тк=43,5°С, температура воздуха на входе в конденсатор Тв1= 32°С, коэффициент теплопередачи К=63 Вт/м•К.

Конструкцию конденсатора принимаем в виде оребренной медной трубки диаметром 11х1,0.

Тепловая нагрузка на конденсатор:

Qk = Q + Ni = 0.303576 + 0.153 = 0.456576 кВт

Теплопередача через стенки конденсатора осуществляется за счет теплопроводности. Поэтому производительность конденсатора определяют по формуле :

где Qk - производительность конденсатора;

F - площадь поверхности конденсатора;

?tm - средняя логарифмическая разность температур между температурами конденсации холодильного агента и окружающей среды.

Температуру воздуха Тв2 на выходе из конденсатора, исходя из условий принятых выше, принимаем равной

Определяем среднюю логарифмическую разность температур ?tm между температурами конденсации холодильного агента и окружающей среды


Определяем площадь поверхности конденсатора F:

F = Qk/(k?tm )= 456.576/(63*7.468) = 0.97 м2.

Исходные данные для расчета: температура кипения хладагента в испарителе Ти=-23,5°С, температура воздуха на входе в испаритель Тв1=32°С, температура воздуха на выходе из испарителя Тв2=-18°С, коэффициент теплопередачи К=12 Вт/м•К, тепловая нагрузка на испаритель Q=155,74 Вт.

Производительность испарителя определяется по формуле :

Определяем среднюю логарифмическую разность температур:


Определяем площадь теплопередающей поверхности теплообмена:

F =Q/(K?tm)=155,74/(12*14,8)=1,16 м2

Исходные данные для расчета: температура кипения хладагента в испарителе Ти=-23,5°С, температура воздуха на входе в испаритель Тв1=32°С, температура воздуха на выходе из испарителя Тв2=5°С, коэффициент теплопередачи К=12 Вт/м•К. Тепловая нагрузка на испаритель Q=182,66 Вт.

Производительность испарителя определяется по следующей формуле .

Определяем среднюю логарифмическую разность температур:


Определяем площадь теплопередающей поверхности:

Расчет капиллярной трубки

Подбор капиллярной трубки для испарителей производим в программе DanfossCapillaryTubeSelector.

Для линии с испарителем морозильной камеры и линии с испарителем холодильной камеры при температуре кипения хладагента Ти=-23,5°С, температуре конденсации хладагента Тк=43,5 °С, с тепловой нагрузкой на испаритель морозильной камеры Q=155,74 Вт и на испаритель холодильной камеры, температуре сухого перегретого пара на входе в компрессор 6,5 °С выбрана капиллярная трубка длиной L=1,85 м, внутренним диаметром d=0,80 мм, скоростью истечения v=12,2 л/мин.

Холодопроизводительность установки охлаждения жидкостей - это та тепловая мощность, которую установка способна отбирать от жидкости. Холодопроизводительность оборудования часто путают с полезной мощностью. Бывает такое, что даже опытные на вид энергетики, увидев, что хододопроизводительность установки в три раза превышает потребляемую мощность, удивляются, что КПД в этом случае достигает 300%(!). На самом деле о КПД можно говорить только в том случае, где существует процесс преобразования энергии. Например в электродвигателе электрическая энергия преобразуется в механическую, при этом имеются потери на нагрев и трение. И КПД двигателя как раз показывает, сколько энергии потеряно.

В случае с холодильником, процесса преобразования нет, а есть отбор тепла (энергии) от охлаждаемой среды.

Холодопроизводительность любой холодильной установки охлаждения жидкости сильно зависит от температуры, до которой необходимо охлаждать жидкость. Чем выше конечная температура жидкости, тем выше холодопроизводительность. Это связано с тем, что хладагент способен отобрать больше тепла у жидкости, при более высокой температуре кипения.

Определить требуемую холодопроизводительность можно в соответствии с исходными данными по формулам (1) или (2).

1. объемный расход охлаждаемой жидкости G (м3/час);

2. требуемая (конечная) температура охлажденной жидкости Тk (°С);

3. температура входящей жидкости Тн(°С).

Формула расчета требуемой холодопроизводительности установки для охлаждения воды:

(1) Q (кВт) = G x (Тн – Тk) x 1,163

Формула расчета требуемой холодопроизводительности установки для охлаждения любой жидкости:

(2) Q (кВт) = G x (Тнж– Тkж) x Cpж x rж / 3600

Cpж – удельная теплоемкость охлаждаемой жидкости, кДж/(кг °С) (таблица),

rж – плотность охлаждаемой жидкости, кг/м3(таблица).

Удельная теплоемкость вещества показывает количество энергии, которую необходимо сообщить/отобрать, для того, чтобы увеличить/уменьшить температуру одного килограмма вещества на один градус Кельвина.

То есть в других словах, если например удельная теплоемкость воды равняется 4,2 кДж/(кг*К) - это значит, что для того, чтобы нагреть один кг воды на один градус, необходимо передать этому кг воды 4,2 кДж энергии.

Удельная теплоемкость для любого вещества есть величина переменная, то есть она зависит от температуры и агрегатного состояния вещества. Если продолжать пример с водой, то ее удельная теплоемкость для 0°С равняется 4,218, а при 40°С 4,178 кДж/(кг*К). Для льда теплоемкость еще ниже -- 2,11 кДж/(кг*К) для льда с температурой 0°С.

Что касается воды, необходимо отметить, что это жидкость с самым высоким значением удельной теплоемкости. Другими словами, чтобы обеспечить заданное количество температуры, вода должна поглотить или отдать количество тепла значительно больше, чем любое другое тело такой же массы.

В связи с этим становится понятным интерес к воде, когда нужно обеспечить искусственный теплообмен. Количество тепла, необходимое для повышения температуры с Тн до Тk тела массой m можно рассчитать по следующей формуле:


Компрессор – это двигатель холодильника. Выполняет основную функцию – сдавливает пары хладагента и передвигает фреон по специальным трубкам, охлаждая холодильную камеру до необходимой температуры. Эффективность работы компрессора и определяет мощность холодильника.

В начале 2000-х годов в Евросоюзе введены нормы, согласно которым информация об основных технических характеристиках устройства должна быть указана на специальной наклейке, расположенной снаружи, в верхней части дверцы. В этот список входит обозначение класса энергоэффективности, средний годовой показатель потребления электроэнергии в киловаттах, объем холодильной и морозильной камеры, уровень шума. Этой информации достаточно для определения экономичности агрегата.

Первое, на что нужно обратить внимание – класс энергоэффективности. Существует 7 классов, которые маркируются английскими буквами A-G, где G определяет модели с наивысшим расходом электричества, соответственно А – наиболее эффективные агрегаты

Класс D – эталонный, считается, что он использует 100% среднего показателя энергопотребления. Маркировка А указывает на то, что компрессор расходует 50% этого показателя. Холодильники класса B-G уже давно не производятся, остались только старые советские агрегаты, использование которых очень затратное. Современные холодильники обозначены маркировкой А+, А++, А+++, они расходуют электрики меньше на 10%, 30%, 50% от среднего потребления техники класса А.

Топ-5 экономичных холодильников

Представляем 5 самых экономичных агрегатов, основываясь на отзывах потребителей и описании моделей ведущих компаний:

От чего зависит расход

Энергоэффективность

Класс энергопотребления присваивается в зависимости от потребляемых киловатт и таких параметров как:

  • Количество камер и компрессоров;
  • Дополнительные функции типа генератора льда;
  • Минимальная температура, устанавливаемая для морозильного и холодильного отсеков.

Мировые стандарты устанавливают 7 основных классов энергоэффективности, каждому из которых присвоена своя буква латинского алфавита (А, В, С, D, E, F, G) и свой цвет (от темно зеленого для устройств с высокой энергоэффективностью до красного с наиболее низкой). Со временем к основным классам добавили еще три:

  • А+++ (некоторые модели Liebherr (Либхер), Electrolux (Электролюкс)),
  • А++ (представители LG (лджи), Samsung (Самсунг), Bosh (Бош)),
  • А+ (представлены у whirlpool (Вирпул), Stinol (Стинол)), они считаются более экономичными.

Средняя потребляемая мощность взята как 100% и обозначена D. Относительно нее другие классы энергоэффективнее на:

  • А – 50-80% (Индезит, Атлант, Бирюса, Беко, Хаер)
  • В – 25-50% (Саратов, Шарп)
  • С – 10-25%
  • D – 0-10%

Менее энергоэффективные на:

  • Е – 0-10% (Smeg)
  • F – 10-25%
  • G >25% (Старые модели Свияга, Москва Зил, Минск)

Таким образом, данный параметр отражает усредненное количество потребленной холодильной камерой энергии, поэтому в целях экономии следует приобретать домой рефрижератор А++.

Климатический класс

Существует 4 климатических класса:

  1. N – (нормальный) – диапазон оптимальной температуры внешней среды t +16+32°С.
  2. SN – (субнормальный) – диапазон t +10+32°С.
  3. ST – (субтропический) – диапазон t +18+38°С.
  4. T – (тропический). диапазон t +18+43°С.

Климатический класс вашего бытового прибора можно найти в технической документации или на специальной наклейке. На российском рынке в подавляющем большинстве реализуются холодильные шкафы категории N и SN (второй подходит для подвальных и низкоотапливаемых помещений).

Количество и размер камер

Самым подходящим вариантом для среднестатистической семьи считается двухкамерный холодильник. В сравнении с ним однокамерный проигрывает во вместительности, а иногда и в уровне электропотребления. Что касается объема: чем больше размер, тем выше расход.

Количество компрессоров

В целом качественный инверторный двухкомпрессорный агрегат работает тише и потребляет энергии меньше. Инвертор позволяет моментально устанавливать нужную температуру и поддерживать её за счет плавной регулировки мощности.

Скорость замораживания

Скорость замораживания зависит от системы охлаждения (капельная, NoFrost) и мощности заморозки (сколько килограмм продуктов замораживает прибор за сутки). Традиционная капельная система охлаждения снижает энергозатраты в сравнении с No Frost. Мощность заморозки рекомендуется выбирать исходя из потребностей: чем больше мощность, тем выше расход и траты на электроэнергию.

Влияние внешних факторов

Одним из факторов, влияющим на потребление энергии холодильником, является климат внешней среды. По данным научных исследований, прохладный воздух позволяет устройству работать более экономно. Оптимальной считается температура окружающей среды +16+18°С.

Герметичность

Если у вас это вышло легко, значит, нужно убедиться в правильном положении прибора и при необходимости поставить новый уплотнитель. Подробнее о замене и других вариатах ремонта в этой статье.

Качество техники

Для производства качественной техники в настоящее время используются специально разработанные современные материалы, позволяющие улучшить энергоэффективность бытовых приборов. Их уникальная структура позволяет поддерживать внутри заданный климат, не расходуя мощности на внешнюю среду. При этом сохраняется полноценный функционал техники.

Класс энергопотребления

Сегодня при покупке холодильника вопрос его экономичности стоит в первом ряду наряду с ценой и дизайном. Не случайно все производители стараются довести эту информацию для потребителей на специальной наклейке на двери холодильника, где указывают кроме его функциональных возможностей еще и класс энергопотребления, расход энергии за год и уровень шума. Классы энергопотребления обычно выделяют на этикетке разными цветами.


Средняя потребляемая мощность в Ваттах

По мощности энергопотребления по европейской классификации все холодильники условно поделены латинскими буквами на 7 основных классов, к которым с 2003 года добавлены подклассы А:

Экономия более 50%

Экономия не более 10%

Индекс энергоэффективности – это указатель доли от среднего уровня потребляемой холодильниками энергии. Например, если на вашем холодильнике указан индекс А 44-55, то значит, ваш холодильник относится к классу А и расходует не больше 42-55% от среднего значения.

Меры по снижению энергопотребления

Многие хозяева до сих пор используют старое холодильное оборудование. В одном случае им жалко выбрасывать работоспособный агрегат, а в другом просто нет свободных средств на покупку нового холодильника. Значительное сокращение потребления электроэнергии возможно только при полном отключении устройства от сети. Большинство людей так и поступают, уезжая на длительное время в командировку, отпуск и т.д. В зимнее время года некоторые хозяева хранят продукты на холодном балконе.


Однако все эти меры не решают проблему высокого энергопотребления и создают определенные неудобства. Создать небольшую, но стабильную экономию электричества, возможно за счет соблюдения несложных правил:

  • Ограничить частоту открываний бытового холодильника, дверца не должна быть открытой в течение длительного времени. Нужно заранее решить, какие продукты требуется достать.
  • Агрегат нельзя ставить слишком плотно к стене или в нишу, поскольку это нарушает циркуляцию нагреваемого воздуха со стороны задней стенки.
  • Теплая или горячая пища не должна ставиться в холодильник.
  • Резиновый уплотнитель на дверце должен обеспечивать хорошую герметичность.
  • Лед и иней следует регулярно удалять с испарителя.

Расчёт потребления кВт холодильника

Расход электроэнергии вычисляется за год работы устройства для сети электропитания с напряжением в 220 В и частотой 50 Гц. Расчёт производится на сто литров полезного объёма в сутки. Данный подход даёт возможность сравнивать холодильники разных размеров. При этом, общая мощность холодильника в кВт будет зависеть от внутреннего объёма камер и количества размещённых в ней продуктов. Помимо этого, определённый вклад в энергопотребление вносят условия внешнего характера. Они могут изменяться в процессе эксплуатации и времени года.


В технической документации на холодильник отображено значение энергопотребления за год. Обычно эта цифра находится в диапазоне 230-450 кВт/ч. Выполнив простой расчёт, разделив это значение на 12 месяцев, получиться расход электроэнергии за месяц. Так он должен находиться в пределах 20-40 кВт/ч. Стоит заметить, что эти значения справедливы только для эксплуатации в идеальных условиях. На практике же мало вероятно достичь таких показаний потребления электричества.

Чтобы узнать сколько потребляет именно ваш холодильник, потребуется информация из технических характеристик устройства, в которой будет указанно количество потребляемых кВт за сутки и за год. Указанные показания необходимо усреднить с учётом погрешности. Погрешность зависит от: общей загруженности холодильника, количества циклов открывания/закрывание двери и их продолжительности, показания температуры в помещении (нормой считается 24-27°С).

Рекомендации по снижению энергопотребления

В первую очередь следует оценить, насколько функциональной техникой в кухне является холодильник. Нет смысла гнаться за модой, приобретая умный прибор, если в нём нет реальной необходимости, ведь каждая дополнительная функция требует энергии для работы;

Не стоит экономить на покупке. Может показаться, что покупка на небольшую сумму гораздо выгоднее дорогостоящей модели от известного производителя, но это обманчивое впечатление

Важно внимательно изучить все параметры приобретаемого прибора. Это относится и ко внутреннему устройству, и к характеристикам из руководства пользователя, и к качеству материалов

Чем надежнее работают вентиляторы, тем лучше поддерживается стабильная температура внутри и меньше задействуются компрессоры. Чем плотнее закрывается дверь, тем меньше тепла из окружающей среды попадает в холодильное отделение. То же касается и теплоизоляции. Эти простые мелочи в совокупности способны ощутимо сократить финансовые затраты;

LED-освещение предпочтительнее ламп накаливания. Энергосберегающие световые технологии обеспечат не только долговечность ламп внутри холодильника, но и экономию на расход электричества;

Плюсом будет энергосберегающий режим отпуска, который уменьшит энергозатраты, пока владельцев не будет дома;

Полезно взять за правило в семье, что двери холодильника не стоит оставлять открытыми надолго. По статистике, из-за открытой без надобности дверцы холодильника, 70 % энергии расходуется впустую. В современных моделях встроен электронный датчик температур, оповещающий звуковым сигналом забывчивых владельцев;

Внимательность к состоянию уплотнителей тоже не будет лишней. Они обеспечивают герметичность и предотвращают попадание теплого воздуха внутрь холодильника. Тест на герметичность достаточно прост: нужно прижать полоску бумаги и вытащить её. Если полоска вытаскивается легко, требуется отрегулировать положение дверцы или заменить уплотнитель;

Вентиляционные решетки требуется держать в открытом состоянии. Инструкция по эксплуатации содержит рекомендации для каждой конкретной модели, в которых сказано, какое расстояние должно быть между стенками холодильника и другими бытовыми приборами. Также важно учитывать и для отдельностоящих, и для встраиваемых в нишу холодильников, промежуток между стеной и задней стенкой холодильника;
Если в квартире полы с подогревом, для крупногабаритного холодильника должен быть предусмотрен отдельный подиум небольшой высоты;

Важную роль играет температура продуктов, загружаемых в холодильное и морозильное отделение. Чем она ниже, тем меньше энергии требуется на охлаждение и заморозку;

Нельзя допускать сильного обледенения стенок в моделях, которые оснащены автоматической системой разморозки на один отсек или не оснащены вовсе. Лёд с испарителя в морозильной камере следует убирать минимум один раз в месяц. Полную разморозку систематически осуществлять каждые 5-6 месяцев.


Устройство поршневого компрессора холодильника

Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.


Внешний вид поршневого компрессора со снятым верхним кожухом

При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления. Основные элементы поршневой конструкции представлены ниже.


Конструкция поршневого компрессора в виде схемы

  1. Нижняя часть металлического кожуха.
  2. Крепление статора электромотора.
  3. Статор двигателя.
  4. Корпус внутреннего электромотора.
  5. Крепеж цилиндра.
  6. Крышка цилиндра.
  7. Плита крепления клапана.
  8. Корпус цилиндра.
  9. Поршневой элемент.
  10. Вал с кривошипной шейкой.
  11. Кулиса.
  12. Ползунок кулисного механизма.
  13. Завитая в спираль медная трубка для нагнетания хладагента.
  14. Верхняя часть герметичного кожуха.
  15. Вал.
  16. Крепление подвески.
  17. Пружина.
  18. Кронштейн подвески.
  19. Подшипники, установленные на вал.
  20. Якорь электродвигателя.

В зависимости от конструкции поршневой системы данные устройства делятся на два типа:

  1. Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
  2. Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).

В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.

Разновидности моделей

Чтобы наглядно разобраться во всех маркировках энергосбережения рефрижераторов, мы решили подобрать наиболее актуальные и востребованные модели, по доступной цене:

Как говорилось выше, фавориты среди всех классов являются модели А++. Они затрачивают меньше электроэнергии, такие аппараты чаще всего однокамерные, стоимость которых колеблется от 19 тысяч рублей. Наиболее востребованная модель данного класса – это LiebherrKTPes 1554 (потребляет всего-то 127 кВт/час.). Основные конкуренты данной модели холодильника, объем которого 137 литров – это морозильные шкафы. Но в отличие от LiebherrKTPes 1554, они тратят существенно больше электроэнергии около 260 кВт/ч;



Что влияет на потребляемую мощность?

На потребление электроэнергии влияют несколько немаловажных факторов. Некоторые из них нужно учитывать уже на стадии выбора прибора, а остальные − в процессе эксплуатации:


Компрессор для холодильника: принцип работы

Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.


Рис. 1. Принцип работы холодильной установки

  • А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
  • B – Компрессорный аппарат.
  • С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
  • D – Капиллярная трубка, служит для выравнивания давления.

При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух

Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние

То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.

Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.

Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.

Читайте также: