Охлаждение продуктов в холодильнике какой вид теплопередачи

Обновлено: 18.05.2024

Обеспечение неизменности исходных свойств продуктов как в процессе их технологической (холодильной) обработки, так и при последующем холодильном хранении. Основные вопросы теории охлаждения пищевых продуктов. Биохимические изменения в пищевых продуктах.

Рубрика Кулинария и продукты питания
Вид контрольная работа
Язык русский
Дата добавления 20.10.2015
Размер файла 2,0 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Практическая работа

Охлаждение пищевых продуктов

1. Основные вопросы теории охлаждения пищевых продуктов

2. Продолжительность охлаждения

1. Основные вопросы теории охлаждения пищевых продуктов

Цель охлаждения состоит в обеспечении неизменности исходных свойств продуктов как в процессе их технологической (холодильной) обработки, так и при последующем холодильном хранении.

Уменьшение скорости течения комплекса процессов - биохимических, микробиологических и физических - достигается воздействием на продукт внешних факторов: температуры, относительной влажности воздуха, его влагосодержания, скорости движения, воздействия барометрического давления. Таким образом, охлаждение - это комплексный процесс переноса теплоты и вещества в объеме продукта и с его поверхности, или, как его принято называть, процесс тепло- и массопереноса.

Определяющим фактором воздействия на продукт является температура. С понижением температуры уменьшается скорость течения всех перечисленных процессов.

При аналитическом решении задачи в процессе охлаждения продуктов приходится прибегать к упрощению в отношении представления формы реального продукта. С определенной долей допустимости принимается, что форма большинства продуктов может быть уподоблена форме простых тел - пластины, шара, цилиндра.

Кроме того, считается, что структура продукта однородна, и он равномерно охлаждается средой. Все вместе сказанное свидетельствует о том, что реальная длительность охлаждения отличается от расчетной.

В холодильной технологии процессом охлаждения широко пользуются для сохранения пищевых продуктов. Охлаждают пищевые продукты на холодильниках до температуры, близкой к их криоскопической температуре, но не ниже ее. Конечная температура охлажденных продуктов находится обычно в пределах 0-40С.

Основная задача охлаждения заключается в создании неблагоприятных условий для развития микробиальных и ферментативных процессов в пищевых продуктах. Цель охлаждения - сохранение первоначального качества продукта в течение определенного времени.

Физические и биохимические изменения в пищевых продуктах при охлаждении. В мышечной ткани после смерти животного возникают интенсивные биохимические процессы, связанные с расщеплением входящих в нее углеводов и эфиров фосфорной кислоты. При этом выделяется энергия в виде тепла. Исследования показали, что для отвода тепла за счет экзотермических реакций требуется холода не менее 10% основного расхода его на охлаждение. холодильный продукт пищевой

Тепло, образующееся за счет биохимических процессов, необходимо своевременно и быстро отводить. В противном случае качество охлаждаемого продукта может значительно ухудшиться. Так, при недостаточном темпе охлаждения мяса может появиться так называемый загар. Он проявляется в виде неестественного цвета ткани и специфического неприятного запаха в глубинных слоях наиболее толстых частей туш или полутуш мяса.

Причиной загара является повышение температуры мышц за счет биохимических реакций до пределов, при которых могут происходить денатурационные ферментативные процессы распада аминокислот с освобождением летучих веществ.

Состояние мышечной ткани при охлаждении, а также хранении в охлажденном виде обусловливается главным образом изменением белковых веществ.

Мышечная ткань получает энергию за счет гидролиза аденозинтрифосфорной кислоты (АТФ). Концентрация ее относительно мала. Во время жизни АТФ быстро ресинтезируется, используя энергию, выделяющуюся при окислении гликогена в углекислоту с образованием воды. После смерти животного обмен веществ в мышечной сокращением.

Продолжающееся образование молочной кислоты вызывает снижение величины рН мышечной ткани, приблизительно с 7,2 (при жизни) до так называемой предельной величины рН, которая обычно равна 5,5. С увеличением предельной величины рН способность ткани удерживать воду возрастает.

Таким образом, существует прямая связь между скоростью гликолиза и степенью сокращения мышечных волокон, которому они подвергаются в процессе посмертного окоченения.

Как и большинство химических реакций, посмертный гликолиз зависит от температуры. Чем ниже температура, при которой возникает этот процесс, тем ниже скорость его протекания. Таким образом, если туша хранится после смерти животного при обычной температуре окружающего воздуха, скорость уменьшения рН, величины АТФ и наступления посмертного окоченения возрастает. Однако если мясо быстро охлаждается, интенсивность этих процессов снижается и влагоудерживающая способность мышечной ткани остается сравнительно высокой. Окоченение замедляется.

В рыбе посмертный гликолиз, в общем, протекает так же, как и в мясе, и аналогичны явления, связанные с посмертным окоченением. Качественным различием между рыбой и мясом является пониженное содержание гликогена в рыбе. Соответственно, посмертное снижение величины рН в рыбе наблюдается в меньшей степени, а сопротивление к бактериальному росту на поверхности ниже, чем у мяса. Для многих разновидностей рыбы бактериальная порча является преобладающим фактором.

В молоке, сливочном масле, яйцах и других продуктах животного происхождения происходят изменения, вызываемые главным образом микробиологическими факторами. Разумеется, в них не может быть таких биохимических процессов, как в свежем мясе или свежевыловленной рыбе. Но и микробиологические процессы могут значительно опережать темпы охлаждения продукта и приводить к его порче. Следовательно, и для этих продуктов требуется быстрое охлаждение.

В скоропортящихся продуктах растительного происхождения - плодах, овощах, ягодах изменения в первую очередь происходят вследствие протекающих в них биохимических процессов. Дело в том, что жизнедеятельность этих продуктов продолжается и после отделения их от материнских растений. Но после съема плодов и овощей почти полностью прекращается поступление в них новых веществ извне, и их жизненные процессы продолжаются за счет ранее накопленных соединений.

Одном из основных и важных проявлений жизнедеятельности плодов и овощей после их съема является дыхание. При дыхании они поглощают из окружающего воздуха кислород, выделяя углекислоту, влагу и некоторое количество тепла. Исходным материалом для дыхания служат углеводы (сахара, крахмал), органические кислоты, жиры, азотистые и другие вещества, входящие в состав плодов и овощей. Следовательно, дыхание сопровождается уменьшением в продуктах ценных составных частей, что приводит к ухудшению их качества и, разумеется, потере массы. При прочих равных условиях с понижением температуры сильно замедляется дыхание плодов и овощей, благодаря чему увеличивается их стойкость. Особенно резко затормаживаются в них биохимические процессы при быстром охлаждении.

Интенсивность дыхания зависит от вида и сорта плодов и овощей, степени их зрелости, температуры и скорости движения окружающей среды и некоторых других факторов. Повышенная интенсивность дыхания свойственна ягодам, зелени и некоторым видам овощей. Плоды усиленно дышат в стадии созревания. Но у различных плодов интенсивность дыхания разная. Она не является постоянной даже для одного и того же вида плодов. Усиленно дышат плоды, получившие механические повреждения ткани.

Очень важным фактором, влияющим на дыхание плодов и овощей, является температура. Чем выше температура, тем скорее протекают процессы обмена в плодах и овощах, а, следовательно, быстрее наступает их созревание, перезревание и, наконец, порча. Понижение температуры сильно замедляет жизненные процессы в плодах и овощах. Особенно резко затормаживаются эти процессы при быстром охлаждении. Например, интенсивность их дыхания при быстром охлаждении может быть сокращена в 5-6 раз. Поэтому главной задачей охлаждения продуктов растительного происхождения является замедление в них жизненных процессов.

ткани некоторое время продолжается. Однако гликолиз замедляется и не может больше поддерживать на прежнем уровне образование АТФ. Это приводит к посмертному окоченению мышечной ткани, связанному с потерей эластичности.

Холодильная обработка основных продуктов процессом охлаждения

Охлаждение продуктов производят в различных средах: в воздухе, холодной воде или рассоле, в тающем льде или снегу.

Чаще охлаждающей средой служит воздух. Охлаждение в воздухе протекает менее интенсивно, чем, например, в жидкой среде, кроме того, охлаждение в нем сопровождается испарением влаги с поверхности продуктов, а, следовательно, потерей их массы. Тем не менее, эта охлаждающая среда является самой распространенной и универсальной для всех продуктов. Воздух не имеет запаха и практически на большинство продуктов не оказывает химического воздействия, если не считать окисляющего действия на жиры содержащегося в воздухе кислорода.

Для интенсификации охлаждения в воздухе применяют разные способы. В первую очередь повышают скорость его движения и увеличивают перепад температур между воздухом и охлаждаемым продуктом.

В воздухе охлаждают мясо и мясные продукты, птицу, яйца, масло и молочные продукты, плоды, овощи, ягоды, кондитерские изделия, кулинарию и другие продукты.

При охлаждении в рассоле продукты погружают в него или орошают им. В ряде случаев перед охлаждением продукт заключают во влагонепроницаемую оболочку. Такое охлаждение называют бесконтактным. Соответственно охлаждение в жидкой среде без оболочки называют контактным. Охлаждение в жидких средах происходит интенсивнее, чем в воздухе, так как коэффициент теплоотдачи к жидкости намного больше, чем к воздуху. Но при охлаждении в жидкости продукт теряет свой внешний вид, просаливается, набухает. При бесконтактном же охлаждении в этой среде снижается теплоотдача и усложняется технологический процесс. Практическое применение жидких охладителей относительно ограничено.

Для охлаждения тушек птицы применяют ледяную воду. Тающий лед или снег используют для охлаждения таких продуктов, как рыба, некоторые овощи и зелень.

Методы охлаждения продуктов. Представляемый материал не в состоянии отразить все многообразие методов охлаждения продуктов. Здесь рассмотрены лишь отдельные, употребительные в практике холодильной технологии.

Мясо в виде туш и полутуш охлаждают в подвешенном виде на подвесных путях в камерах, оборудованных системами для искусственного охлаждения и циркуляции воздуха. Говядина поступает в полутушах или четвертинах, а свинина и баранина в тушах или полутушах. На крючьях подвесных путей говядину и свинину размещают поштучно. Бараньи туши располагают на подвесных путях в специальных рамах (люстрах) в один или два яруса. В каждом ярусе помещают по 10 туш.

На каждом подвесном пути размещают при возможности туши одной категории и примерно с одинаковой массой. Крупные полутуши подвешивают в зоне с наиболее интенсивным движением воздуха.

На погонном метре подвесного пути размещают по 2 - 3 говяжьих, 3-4 свиных полутуши или раму с бараньими тушами. Нагрузка на 1 пог. м пути составляет: говядины 250 кг, свинины и баранины 200 кг.

Преимуществами быстрого охлаждения мяса также являются: улучшение его санитарного состояния, так как вследствие быстрого охлаждения поверхности продукта рост микроорганизмов задерживается; сохранение окраски свежего мяса и белого цвета жира; более длительный срок созревания и, следовательно, хранения, уменьшение производственных площадей.

В настоящее время процесс охлаждения парного мяса осуществляют одностадийным или двухстадийным методами в специально оборудованных камерах или туннелях.

Камерное одностадийное охлаждение осуществляют при температуре -5. -2 °С и скорости движения воздуха 0,5-2,0 м/с. Процесс одностадийного охлаждения полутуш говядины или свинины является длительным по времени и составляет 16-36 ч.

Двухстадийное охлаждение может выполняться в одной камере или при последовательном перемещении из камеры в камеру. Температура воздуха на первой стадии составляет --12. --10 °С. Далее мясо доохлаждается при температуре 0 0С и скорости движения порядка 0,5 м/с. Принципиально возможно охлаждение мяса при температуре воздуха на первой стадии -25. -20 °С и скорости его движения 5-7 м/с до достижения криоскопической температуры на поверхности. На второй стадии осуществляется процесс доохлаждения мяса при криоскопической температуре и скорости движения воздуха 0,5 м/с. Метод привлекателен, прежде всего, тем, что он позволяет уменьшить усушку продукта, однако требует качественного технического контроля процесса охлаждения.

Из данных таблицы 1 следует, что быстрый способ охлаждения мяса обеспечивает уменьшение продолжительности процесса в 1,5 раза и снижение усушки на 0,2 % по сравнению с ускоренным способом. Охлаждение мяса с диспергированием воды на его поверхность обеспечивает уменьшение усушки мяса и снижает влияние на качество мяса "холодового сокращения", поскольку первые 5-6 часов охлаждения мяса проводят при положительных температурах с периодическим диспергированием на поверхность полутуш воды в течение одной минуты с интервалом одиннадцать минут до достижения температуры их поверхности 10-12 0С. Охлаждение мяса с применением пищевых покрытий позволяет снизить усушку мяса не только на стадии охлаждения, но и при последующем хранении.


Возьмите в руки металлическое украшение с любым камнем. Камушек будет греться достаточно долго, в то время, как металл у этого же украшения нагреется значительно быстрее. У этих материалов разная теплоемкость — давайте разбираться, что это значит.

О чем эта статья:

Нагревание и охлаждение

Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.

Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.

  • Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.

Обнаружено новое непонятное слово — теплопередача.
Минуточку, давайте закончим с количеством теплоты.

В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.

А вот теперь поговорим о видах теплопередачи.

Виды теплопередачи

  • Теплопередача — это физический процесс передачи тепловой энергии от более нагретого тела к менее нагретому.

Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.

Теплопроводность

Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.

Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.

Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.

Конвекция

Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.

Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.


Конвекция

Излучение

Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.

Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.

Удельная теплоемкость: понятие и формула для расчета

Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.

С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:

Удельная теплоемкость вещества

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Также ее можно рассчитать через теплоемкость вещества:

Удельная теплоемкость вещества

c — удельная теплоемкость вещества [Дж/кг*˚C]

C — теплоемкость вещества [Дж/˚C]

Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:

Количество теплоты, необходимое для нагревания тела

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Таблица удельных теплоемкостей

Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.

Производители разработали несколько систем охлаждения в холодильнике. Некоторые из них используются чаще, другие реже: разберем подробно каждую, чтобы вы могли сделать правильный выбор. Каждому покупателю важно знать принцип работы техники и тип охлаждения, чтобы подобрать оптимальный вариант.

Принципы работы охлаждения в холодильниках

Схемы и принцип работы охлаждающей системы зависят от типа холодильника. Есть четыре основных.

Компрессионный.

Большинство современных холодильников. Работают от компрессора (иногда двух), который создает достаточное давление для циркуляции хладагента по системе — так происходит охлаждение камеры. Чтобы завершить цикл, хладагент должен снова превратиться в газ. Для этого есть с наружный конденсатор (решетка на задней стенке) или внутренний (защищен специальной пластиной). Конденсатор создает тепло, отчего жидкость превращается в газ. Схема работы компрессорного холодильника:

Системы охлаждения в холодильнике: как работают, изображение №1

Абсорбционный.

Работает без компрессора: хладагент движется по системе благодаря работе теплообменника. Электричества он потребляет гораздо больше, чем предыдущий вариант.

Системы охлаждения в холодильнике: как работают, изображение №2

Термоэлектрический.

Внутри холодильника расположены пластины, которые нагреваются при подаче электричества. Способ неэффективен для бытовых приборов: чем больше объем камеры, тем большее количество энергии нужно затрачивать. Термоэлектрическое охлаждение используется в небольших холодильниках для косметики.

Системы охлаждения в холодильнике: как работают, изображение №3

Вихревой тип имел право на жизнь, но не вышел за пределы тестовых установок из-за низкого КПД и сильного шума. В специальных камерах воздух, сжатый компрессором, расширялся. Так и происходило охлаждение.

Системы охлаждения в холодильнике: как работают, изображение №4

Компрессионный холодильник может оснащаться одним или двумя моторами. В двухконтурном приборе каждый мотор отвечает за работу своей камеры: верхней или нижней. Система охлаждения в них может быть трех видов. Ниже рассмотрим каждую из них.

Какая система лучше

Устройство охлаждения влияет на качество и сроки хранения продуктов, а также на частотность разморозки. Если в камере часто намерзает лед и снег, тогда требуется еженедельная разморозка. Чтобы этого избежать, нужно выбрать холодильник с правильной системой.

Системы охлаждения в холодильнике: как работают, изображение №5

Многие путают статический тип с капельным. На самом деле капельная система — это разморозка. Когда конденсат замерзает на стенке, а затем оттаивает и стекает в слив.

Системы охлаждения в холодильнике: как работают, изображение №6

Температурный режим позволяет устанавливать регулятор, если управление электромеханическое. Электронное управление подразумевает наличие кнопок и дисплея. Разморозка в таком случае выполняется полуавтоматически. Холодильное отделение оттаивает капельным способом, а морозильное приходится размораживать вручную.

Согласно данным производителей, выполнять размораживание статического агрегата нужно два раза в год.

Недостатком статической системы считается неравномерное распределение температуры в камере. Холодный поток опускается вниз, поэтому, если сразу загрузить полки теплыми продуктами, прибор будет долго набирать нужную температуру.

Преимущество — это сохранение влаги в продуктах. Даже если вы поставите ненакрытые ягоды или овощи, на следующий день они сохранят свой внешний вид.

No Frost

Технологии No Frost сегодня пользуется наибольшей популярностью. Производители решили облегчить хозяйкам жизнь, придумав холодильник, который не нужно размораживать.

Принцип работы таков: радиатор находится в камере. Воздух принудительно прогоняется вентиляторами через испаритель — там он охлаждается и проходит в камеру. Преимуществом данного типа является равномерное распределение температуры за счет распространения воздушного потока.

Системы охлаждения в холодильнике: как работают, изображение №7

Вся влага, которая была накоплена воздухом, оседает на испарителе. После отключения мотора срабатывает датчик и включается ТЭН оттайки. Влага стекает в слив и выводится из холодильника.

Таким образом лед и снег не намерзают на стенках отделения. Однако если поставить продукты непокрытыми, они быстро обветрятся и потеряют влагу.

Системы охлаждения в холодильнике: как работают, изображение №8

Также есть более усовершенствованные технологии. Принцип действия такой же, как у Ноу Фрост, только в камере на уровне каждой полки организовано вентиляционное отверстие. Подобное многопоточное охлаждение позволяет поддерживать оптимальную температуру везде. Это технологии Air Flow, Multi Air Flow и другие.

Динамический тип

Динамическая схема работы аналогична статической, только более совершенна. В холодильном отделе расположен вентилятор, как в случае с No Frost, что позволяет воздуху распределяться по камере. В остальном отличий никаких нет.

Системы охлаждения в холодильнике: как работают, изображение №9

Последнее время стали выпускать холодильную технику с гибридной комбинированной системой. Например, в холодильном отделении организовано статическое охлаждение, а в морозильной Ноу Фрост. Так пользователю не приходится вручную заниматься разморозкой. У производителей Electrolux технология называется Frost Free.

Важно! Не думайте, что холодильник с No Frost или Frost Free совсем не нуждаются в разморозке. Минимум один раз в год их нужно отключать на 24 часа, мыть, обрабатывать от плесени и неприятных запахов.

Если правильно подобрать технику с оптимальной системой охлаждения, эксплуатация прибора будет удобной и приятной. Ухаживайте за внутренней камерой холодильника, не позволяйте засыхать загрязнениям, которые становятся источником неприятного запаха.

Мощность теплопередачи – количество теплоты, отданное системой за время .

\[N=\frac<Q></p>
<p>\]

Эта мощность зависит от разности температур (если горячее тело вынести на мороз, остывает быстрее, чем если такое же тело вынести на жару), от площади поверхности тела (чем она больше, тем быстрее остынет), от расстояния, на которое тепло передают:

\[Q=\frac<2S(t_1-t_2)></p>
<p>\]

Задача 1. Ведро воды удалось нагреть кипятильником мощностью 800 Вт лишь до " width="25" height="13" />
С. За какое время ведро остынет до " width="25" height="12" />
С после выключения кипятильника? Масса воды 10 кг.

Задача на прямое применение данной выше формулы. Ведро остывает на 1 градус, следовательно,

\[\tau =\frac<Q></p>
<p>< N >=\frac=\frac=52,5\]

Задача 2. Петя заметил, что на морозе вода в стакане остывает от " width="25" height="12" />
С до " width="25" height="12" />
С за 3 мин, а от " width="25" height="12" />
С до " width="25" height="12" />
С за 6 мин. Чему равна температура окружающей среды ? Считайте, что мощность теплопередачи пропорциональна разности температур стакана и окружающей среды.

Вода и в первом, и во втором случае отдает одно и то же количество теплоты, так как остывает в обоих случаях на три градуса. Тогда

\[N_1\frac<Q></p>
<p>\]

\[N_2\frac<Q></p>
<p>\]

\[\frac< N_2></p>
<p>< N_1>=\frac=\frac\]

Но, с другой стороны,

и -средняя температура воды в первом и во втором случаях. Коэффициент учитывает все остальные параметры: длины, площади и пр.

Поделим уравнения друг на друга

\[\frac< N_2></p>
<p>< N_1>=\frac< t_2-t_0>< t_1-t_0>\]

\[t_0=2t_2-t_1=2\cdot30-90=-30\]

t_0=-30^<\circ></p>
<p>Ответ:

Задача 3. На плите стоит кастрюля с водой. При нагревании температура воды увеличилась от " width="25" height="12" />
C до " width="25" height="12" />
C за одну минуту. Какая доля теплоты, получаемой водой при нагревании, рассеивается в окружающем пространстве, если время остывания той же воды от " width="25" height="12" />
C до " width="25" height="12" />
C равно 9,0 минутам?

Кастрюлю подогревают – но это не значит, что она не остывает! Вот такой парадокс. Тепло кастрюля все равно отдает, всегда, когда она теплее, чем окружающие предметы. Просто, если кастрюля нагревается, то это означает, что тепло, которое она получает от плитки, больше, чем то, которое она рассеивает.

Поэтому при нагреве

\[\tau_1(N-N_<rass></p>
<p>)=c m \Delta t\]

А при пассивном остывании

\[\tau_2 N_<rass></p>
<p>=c m \Delta t\]

\[\tau_1(N-N_</p>
<p>)=\tau_2 N_\]

\[N_<rass></p>
<p>(\tau_1+\tau_2)=\tau_1N\]

\[\frac< N_<rass></p>
<p>>=\frac=\frac\]

Задача 4. В палатке, покрытой сверху шерстяными одеялами, пол застелен толстым теплонепроницаемым войлоком. Одинокий спящий индеец начинает мерзнуть в такой палатке при уличной температуре воздуха " width="24" height="12" />
С. Два спящих индейца начинают мерзнуть в такой палатке при уличной температуре воздуха " width="16" height="12" />
С. При какой температуре воздуха индейцы начинают пользоваться палатками? При какой температуре в той же палате будет холодно трем индейцам? Какому количеству индейцев никогда не будет холодно в палатке? Считайте, что тепловая мощность, передаваемая через тент палатки, пропорциональна разности температур внутри и снаружи.

Индеец теплый, теплее окружающей среды. Он отдает тепло наружному холодному воздуху. Если температура воздуха , мощность теплоотдачи индейца . Потому что если на улице другая температура, то и мощность уже другая, индеец остывает или быстрее, или медленнее. Пусть температура вокруг индейца, при которой индеец начинает замерзать, . Это может быть и температура наружного воздуха, и температура в палатке. Тогда двое индейцев имеют мощность теплоотдачи , трое – и так далее. Пусть коэффициент учитывает площадь поверхности индейца, рост, материал, из которого индеец состоит… Тогда

Разделим второе на первое:

\[2=\frac< t_0-t_2></p>
<p>< t_0-t_1>\]

\[t_0=2t_1-t_2=2\cdot10-4=16\]

Разделим третье на первое:

\[3=\frac< t_0-t_3></p>
<p>< t_0-t_1>\]

\[t_0=3t_1-2t_0=3\cdot10-2\cdot16=-2\]

Разделим четвертое на первое:

\[n=\frac< t_0-t_n></p>
<p>< t_0-t_1>\]

Тогда, если температура на улице , то

\[n=\frac< 16+273></p>
<p>< 16-10>=48,17\]

Задача 5. Система охлаждения нагревателя состоит из нескольких одинаковых теплопроводящих стержней, соединенных небольшими шариками. Температура нагревателя " width="77" height="15" />
С, температура холодильника " width="68" height="15" />
С. Чему равна разность температур шарика K и шарика B ( ) в установившемся режиме? Приток тепла в системе осуществляется только от нагревателя, а отвод только через холодильник. Мощность теплопередачи через стержень пропорциональна разности температур на его концах.

теплопередача

теплопередача

Точка ближе к холодильнику, чем , поэтому направление потока логично будет выбрать от к .

теплопередача

Точка дальше от нагревателя, чем , поэтому ставим стрелку от к .

теплопередача

Теперь определим величины этих потоков. Если от к направлен поток , то от к – тоже . Но тогда от к холодильнику – , так как в силу симметрии в левой части расстановка потоков такая же.

теплопередача

Если теперь пройти от точки к холодильнику по красной стрелке, наберется , следовательно, поток от точки к холодильнику тоже . Тогда от нагревателя к точке будет течь поток , и в левой части аналогично.

теплопередача

Следовательно, если пройти от нагревателя к холодильнику через точку по стрелке, поток будет равен . Тогда и “напрямки” тоже .

70^<\circ></p>
<p>Но температура холодильника и нагревателя отличается на
, поэтому

Тогда расставляем температуры узлов: в точке и симметричной ей слева +4\cdot5=50^" width="126" height="15" />
, в точке -N=45^" width="112" height="13" />
, в точке -5N=75^" width="129" height="13" />
.

\[T_K-T_B=75^</p>
<p>-45^=30^\]

T_K-T_B=30^<\circ></p>
<p>Ответ:
.

2322

К концу XIX века тепловая обработка молока получила столь широкое применение, что стала использоваться для разнообразных целей на большинстве молокозаводов — например, для обработки молока при изготовлении сыра и масла.

До внедрения тепловой обработки молоко представляло собой постоянный источник инфекций, так как оно является идеальной средой для развития микроорганизмов. Через молоко зачастую распространялись такие болезни, как туберкулез и брюшной тиф.

Изучая историю пастеризации, следует заметить, что, хотя ученые повсеместно сошлись на том,
при какой температуре следует проводить тепловую обработку молока, в производственной практике в течение длительного времени серьезного контроля над этим процессом не осуществлялось.

В результате молоко то перегревалось, что придавало ему соответствующий привкус, то недостаточно нагревалось, и тогда в нем сохранялись жизнеспособные возбудители туберкулеза.

В середине 30-х годов XX века (JDR:6/191) Кэй (Кау) и Грэхэм (Graham) объявили об открытии фермента фосфатазы. Данный фермент всегда присутствует в сыром молоке и разрушается под воздействием повышенной температуры в течение определенного времени, необходимого для эффективной пастеризации. Кроме того, его присутствие или отсутствие легко подтверждается (проверка на фосфатазу по методу Шерера /Scharer/). Отсутствие фосфатазы свидетельствует о том, что молоко прошло необходимую тепловую обработку.

К счастью, все обычные патогенные организмы, встречающиеся в молоке, погибают при сравнительно небольшом нагреве, который лишь незначительно отражается на физико-химических качествах молока. Самый устойчивый микроорганизм — возбудитель туберкулеза погибает уже при нагреве молока до 63°С в течение 10 минут. Полная безопасность обеспечивается выдержкой молока при этой температуре в течение 30 минут. Таким образом, этот микроорганизм является своего рода индикатором эффективности процесса пастеризации: любая тепловая обработка, вызывающая его гибель, надежно уничтожает все остальные патогенные микроорганизмы в молоке.

Помимо патогенных микроорганизмов, молоко содержит другие микроорганизмы и вещества, которые портят вкусовые качества и сокращают сроки хранения различных молочных продуктов. Поэтому следующей целью тепловой обработки является уничтожение как можно большего числа этих opганизмов и ферментных систем, что требует более интенсивной тепловой обработки, чем для уничтожения патогенных микроорганизмов.

Второе предназначение тепловой обработки приобретало все большее значение по мере укрупнения молочных заводов и сокращения их количества. Увеличившиеся интервалы времени между поставками означают, что, несмотря на современные методы охлаждения, микроорганизмы имеют больше времени для размножения и образования ферментов. Кроме того, разрушаются составляющие характеристики молока, снижается активная кислотность (pH) и т.д. Чтобы избежать этих проблем, молоко должно подвергаться тепловой обработке сразу же после поступления на молокозавод.

Большая удача, что ни один из основных патогенных организмов, присутствующих в молоке, не образует спор.

Рис.1 Летальное воздействие температуры на микроорганизмы.

Сочетание температуры и времени

Сочетание степени нагрева и его продолжительности — очень важный фактор, определяющий интенсивность тепловой обработки. На рис.1 графически показано, при каких сочетаниях этих двух характеристик погибают бактерии группы кишечной палочки, возбудители брюшного тифа и туберкулеза. В соответствии с этими графиками группы кишечных палочек погибают при выдерживании в течение 1 секунды при температуре 70°С. При температуре 65°С для уничтожения этих бактерий молоко надо выдерживать в течение десяти секунд. Эти комбинации — 70°С/1 с и 65°С/10 с — оказывают одинаковое летальное воздействие на бактерии.

Возбудитель туберкулеза более устойчив к тепловой обработке, и для его гарантированного уничтожения требуется выдержка в 20 секунд при 70°С или около двух минут при 65°С. В молоке также могут находиться теплоустойчивые микрококки. Как правило, они абсолютно безвредны.

Ограничения при тепловой обработке

Интенсивная тепловая обработка молока желательна с точки зрения борьбы с микроорганизмами. Но такая обработка предполагает риск отрицательного воздействия на внешний вид, вкус и питательную ценность молока. При высоких температурах белки в молоке денатурируют. Это означает, что интенсивная тепловая обработка существенно ухудшает пригодность молока для изготовления сыра. Сильный нагрев приводит к изменению вкуса: сначала возникает привкус кипяченого, а далее — пригоревшего молока. Таким образом, следует подбирать оптимальный режим тепловой обработки, при котором гарантированно уничтожались бы болезнетворные микроорганизмы и не ухудшались бы качественные показатели.

В связи с тем, что тепловая обработка стала важнейшей составляющей молочного производства и ее значение получило всеобщее признание, были разработаны различные виды тепловой обработки, которые перечислены в таблице 1.

Таблица 1.
Основные виды тепловой обработки, применяемые в молочном производстве

Читайте также: