Почему наличие нагревателя и холодильника является необходимым условием для циклического совершения

Обновлено: 05.07.2024

Производственные процессы, торговля и быт редко обходятся без установок для охлаждения. Даже посреди зимы поддерживать стабильную температуру продуктов питания без охладителя сложно. Кратко рассмотрим принцип работы (действия) холодильной машины – холодильника.

Как работает холодильник простыми словами

Принцип работы холодильника основан на испарении и выработке конденсата хладагента, зачастую – жидкого фреона. Охладитель поглощает вырабатываемую машиной тепловую энергию вследствие кипения холодильного агента. В его роли преимущественно выступает фреон.

Энергия у системы забирается (образуется холод), когда изменяется давление хладагента, приводящее к корректировке температуры его кипения. Для испарения жидкости её необходимо нагреть, конденсация наблюдается при отборе тепла из парообразной среды.

Холодильные машины в физике представлены четырьмя узлами:

  • Двигатель-компрессор – обеспечивает движение фреона по трубопроводу установки. Электромотор трансформирует электроэнергию в механическую, заставляя механический поршень компрессора двигаться и перекачивать хладагент. Холодильники комплектуются комбинированными мотор-компрессорами – два устройства в одном корпусе. Обычно агрегат подвешивается на пружине, поглощающей вибрации.
  • Конденсатор – теплообменник, где тепловая энергия паров фреона передаётся окружающей среде с переходом хладагента из газообразного в жидкое состояние. Бытовые холодильники оснащаются змееобразным конденсатором, расположенным на задней стенке устройства. В крупных промышленных установках используют теплообменники с радиаторами или вентиляторами, повышающими эффективность охлаждения.
  • Испаритель – аппарат, охлаждающий сам продукт, активно поглощающий тепловую энергию.
  • Дросселирующая капиллярная трубка из меди диаметром 0,6-0,85 см (терморегулирующий вентиль) – регулирует поток или давление фреона, который поступает из конденсатора в испаритель.

Роль холодильника в тепловом двигателе

Тепловой двигатель – агрегат, преобразующий тепловую энергию в механическую. Тепло он получает из внешней среды или использует образующееся вследствие сгорания топлива в камерах двигателей внутреннего сгорания. Часто возникает логический вопрос: зачем в тепловом двигателе нужен холодильник, какова его роль?


Работа тепловым двигателем совершается при разности давлений с обеих сторон поршня. Оно создаётся путём повышения температуры внутри агрегата на сотни градусов. Газ при этом совершает работу – расширяется, двигая поршень. Холодильник этот газ охлаждает, чтобы работа на сжатие была меньше, чем на декомпрессию.

Принцип работы холодильной машины основывается на охлаждении – отборе тепла у рабочей машины посредством кипения жидкости.

КПД тепловой машины связан с количеством теплоты, полученным за цикл от нагревателя, и количеством теплоты, отданным холодильнику, соотношением:

КПД - формула

Полезная теплота (энергия) - энергия, израсходованная только на достижение поставленной цели (в общем плане).

Полная энергия - общее количество затраченной энергии (то есть с учётом потерь на какие-либо факторы).

Полная энергия (для тепловой машины) - сумма полезной энергии и энергии, и энергии, отданной холодильнику: Qполн.=Qполезн.+Qхол.

Значит, полезная энергия равна разности полной энергии и энергии, отданной холодильнику: Qполезн.=Qполн.-Qхол.

Если известен процент КПД, то количество теплоты можно рассчитать с помощью пропорций. зная лишь одну из составляющих теплоты и КПД, можно вычислить остальные составляющие. Проценты КПД прямо пропорциональны полезной работе. Например, если КПД тепловой машины равен 10% и эта машина машина совершила работу например в 20 ДЖ за цикл работы, то вся теплота (100%) равна 200 Дж, из которых 180 (90%) отдано холодильнику.

Зависимость КПД от температуры

η=(Tн-Tх)/Tн - КПД равен отношению разности температур нагревателя и холодильника к температуре нагревателя.

Надо учитывать, что температура холодильника не может быть выше температуры нагревателя, иначе тепловая машина не имеет смысла существования.

При неизменной температуре холодильника, чем выше температура нагревателя, тем выше КПД, зависимость по гиперболе.

При неизменной температуре нагревателя, чем выше температура холодильника, тем ниже КПД (здесь зависимость прямолинейная).

Внутренняя энергия газа является функцией состояния газа, то есть зависит только от того, в каком состоянии находится газ. Если газ в результате циклического процесса возвращается в исходное состояние, изменение его внутренней энергии будет равным нулю.

Если на диаграмме p-V площадь фигуры, ограниченной линиями циклического процесса отлична от нуля, то газ совершил работу.

При циклическом процессе на диаграмме p-V, если газ совершил работу, значит суммарное количество полученной и отданной теплоты равно нулю, так как всё полученное количество теплоты послностью расходуется на изменение внутренней энергии и на совершение работы газом. Газ при возвращении в исходное состояние имеет ту же внутреннюю энергию, так как она является функцией состояния, а значит, вся полученная энергия была потрачена на работу.

КПД тепловой машины можно увеличить, уменьшив температуру холодильника или увеличив температуру нагревателя.

После совершения любого циклического процесса газ возвращается в первоначальное состояние. Внутренняя энергия является функцией состояния, а значит в результате совершения циклического процесса её изменение равно нулю.

На диаграмме p-T газ не совершает работу, если прямая графика изменения его состояния проходит через начало координат, так как в этом случае объём не изменяется.

Положительное количество теплоты самопроизвольно не может перейти от более холодного тела к более горячему.

Нельзя создать циклический тепловой двигатель, с помощью которого можно энергию, полученную от нагревателя, полностью превратить в механическую работу.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что КПД не может равняться 100%.

Постулат Клаузиуса: "Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Тепло самопроизвольно может переходить только от более горячего тела к более холодному.".

Постулат Томпсона (Кельвина): "Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара".

Возможна передача энергии от тела с меньшей температурой к телу с большей температурой путём совершения работы.

Внутренняя энергия фиксированного количества одноатомного идеального газа зависит только от температуры: ΔU=(3/2) v R ΔT.

Цикл Карно состоит из двух адиабат, изотермического сжатия и расширения. Внутренняя энергия газа изменяется на адиабатах, то есть на двух участках этого цикла.

В программу школьного курса физики входит ряд вопросов, связанных с тепловыми двигателями. Школьник должен знать основные принципы работы теплового двигателя, понимать определение коэффициента полезного действия (КПД) циклического процесса, уметь находить эту величину в простейших случаях, знать, что такое цикл Карно и его КПД.

Тепловым двигателем (или тепловой машиной) называется процесс, в результате которого внутренняя энергия какого-то тела превращается в механическую работу. Тело, внутренняя энергия которого превращается двигателем в работу, называется нагревателем двигателя. Механическая работа в тепловых машинах совершается газом, который принято называть рабочим телом (или рабочим веществом) тепловой машины. При расширении рабочее тело и совершает полезную работу.


Таким образом, двигатель превращает в механическую работу не всю энергию, взятую у нагревателя, а только ее часть; остальная часть этой энергии используется не для совершения работы, а передается холодильнику, т.е. фактически теряется для совершения работы. Поэтому величиной, характеризующей эффективность работы двигателя, является отношение


где — работа, совершаемая газом в течение цикла, — количество теплоты, полученное газом от нагревателя за цикл. Отношение (15.1) показывает, какую часть количества теплоты, полученного у нагревателя, двигатель превращает в работу и называется коэффициентом полезного действия (КПД) двигателя.

Если в течение цикла рабочее тело двигателя отдает холодильнику количество теплоты (эта величина по своему смыслу положительна), то для работы газа справедливо соотношение . Поэтому существует ряд других форм записи формулы (15.1) для КПД двигателя


Французский физик и инженер С. Карно доказал, что максимальным КПД среди всех процессов, использующих некоторое тело с температурой в качестве нагревателя, и некоторое другое тело с температурой ( ) в качестве холодильника, обладает процесс, состоящий из двух изотерм (при температурах нагревателя и холодильника ) и двух адиабат (см. рисунок).


Изотермам на графике отвечают участки графика 1-2 (при температуре нагревателя ) и 3-4 (при температуре холодильника ), адиабатам — участки графика 2-3 и 4-1. Этот процесс называется циклом Карно. КПД цикла Карно равен


Поскольку в результате совершения циклического процесса газ возвращается в первоначальное состояние (задача 15.1.2), то изменение внутренней энергии газа в этом процессе равно нулю (ответ 2).


Применяя в задаче 15.1.3 первый закон термодинамики ко всему циклическому процессу и учитывая, что изменение внутренней энергии газа равно нулю (см. предыдущую задачу), заключаем, что (ответ 3).


Работа газа в любом процессе равна сумме работ на отдельных участках процесса. Поскольку процесс 2-3 в задаче 15.1.6 — изохорический, то работа газа в этом процессе равна нулю. Поэтому (ответ 3).

По определению КПД показывает, какую часть количества теплоты, полученного у нагревателя, двигатель превращает в работу (задача 15.1.7 — ответ 4).

Работа двигателя за цикл равна разности количеств теплоты, полученного от нагревателя и отданного холодильнику : . Поэтому КПД цикла есть


(задача 15.1.8 — ответ 3).

По формуле (15.3) находим КПД цикла Карно в задаче 15.1.9


Пусть температура нагревателя первоначального цикла Карно равна , температура холодильника (задача 15.1.10). Тогда по формуле (15.3) для КПД первоначального цикла имеем



Отсюда находим . Поэтому для КПД нового цикла Карно получаем


В задаче 15.2.1 формулы (2), (3) и (4) представляют собой разные варианты записи определения КПД теплового двигателя (см. формулы (15.1) и (15.2)). Поэтому не определяет КПД двигателя только формула 1. (ответ 1).


Мощностью двигателя называется работа, совершенная двигателем в единицу времени. Поскольку работа двигателя равна разности полученного от нагревателя и отданного холодильнику количеств теплоты, имеем для мощности двигателя в задаче 15.2.2


По формуле (15.2) имеем для КПД двигателя в задаче 15.2.3


где — количество теплоты, полученное от нагревателя, — количество теплоты, отданное холодильнику (правильный ответ — 2).

Для нахождения КПД теплового двигателя в задаче 15.2.4 удобно использовать последнюю из формул (15.2). Имеем


где — работа газа, — количество теплоты, отданное холодильнику. Поэтому правильный ответ в задаче — 3.

Пусть газ совершает за цикл работу (задача 15.2.5). Поскольку количество теплоты, полученное от нагревателя равно ( — количество теплоты, отданное холодильнику), и работа составляет 20 % от этой величины, то для работы справедливо соотношение = 0,2 ( + 100). Отсюда находим = 25 Дж (ответ 1).

Поскольку работа теплового двигателя в задаче 15.2.6 равна 100 Дж при КПД двигателя 25 %, то двигатель получает от нагревателя количество теплоты 400 Дж. Поэтому он отдает холодильнику 300 Дж теплоты в течение цикла (ответ 4).

В задаче 15.2.7 газ получает или отдает теплоту только в процессах 1-2 и 3-1 (процесс 2-3 по условию адиабатический). Поэтому данное в условии задачи количество теплоты является количеством теплоты, полученным от нагревателя в течение цикла, — количеством теплоты, отданном холодильнику. Поэтому работа газа равна (ответ 1).

Цикл, данный в задаче 15.2.8, состоит из двух изотерм 2-3 и 4-1 и двух изохор 1-2 и 3-4. Работа газа в изохорических процессах равна нулю. Сравним работы газа в изотермических процессах. Для этого удобно построить график зависимости давления от объема в рассматриваемом процессе, поскольку работа газа есть площадь под этим графиком. График зависимости давления от объема для заданного в условии процесса приведен на рисунке. Поскольку изотерме 2-3 соответствует бóльшая температура, чем изотерме 4-1, то она будет расположена выше на графике . Объем газа в процессе 2-3 увеличивается, в процессе 4-1 уменьшается. Таким образом, график процесса на графике проходится по часовой стрелке, и, следовательно, работа газа за цикл положительна (ответ 1).

Согласно определению коэффициент полезного действия представляет отношение работы газа за цикл к количеству теплоты , полученному от нагревателя . Как следует из данного в условии задачи 15.2.10 графика, и в процессе 1-2-4-1 и в процессе 1-2-3-1 газ получает теплоту только на участке 1-2. Поэтому количество теплоты, полученное газом от нагревателя в процессах 1-2-4-1 и 1-2-3-1 одинаково. А вот работа газа в процессе 1-2-4-1 вдвое меньше (так площадь треугольника 1-2-4 как вдвое меньше площади треугольника 1-2-4-1). Поэтому коэффициент полезного действия процесса 1-2-4-1 вдвое меньше коэффициента полезного действия процесса 1-2-3-1 (ответ 1).


comment

2021-03-13
Какую максимальную работу можно получить от периодически действующей тепловой машины, нагревателем которой служит $m_ = 1 кг$ воды при начальной температуре $T_ = 373 К$, а холодильником - $m_ = 1 кг$ льда при температуре $T_ = 273 К$, к моменту, когда растает весь лед? Чему будет равна температура воды нагревателя в этот момент? Удельная теплота плавления льда $q = 80 ккал/кг$. Зависимостью теплоемкости воды от температуры пренебречь.

Работа, совершаемая любой тепловой машиной в замкнутом цикле, по первому началу термодинамики равна

где $Q_$ - количество теплоты, подведенное к рабочему телу за цикл, а $Q_$ - отведенное количество теплотьк Коэффициент полезного действия (КПД) тепловой машины равен

Максимальную работу можно получить (теоретически), если тепловая машина будет работать по циклу Карно^ КПД цикла Карно зависит только от температур $T_$ и $T_$ нагревателя и холодильника:

Сравнивая два выражения для КПД, найдем, что для цикла Карно

В нашем случае количество теплоты $Q_$, отведенное от рабочего тела и переданное холодильнику, будет идти на плавление льда, и температура холодильника $T_$ будет оставаться постоянной (пока не растает весь лед) и равной 273 К А вот температура нагревателя (горячая вода) будет уменьшаться после каждого цикла, и к моменту, когда лед растает, температура воды нагревателя будет заметно меньше начальной, равной 373 К Следовательно, температура нагревателя будет переменной величиной

Пусть в некоторый произвольный момент времени температура нагревателя была $T$, а за бесконечно малое время работы тепловой машины она уменьшилась на $dT$. Количество теплоты, переданное рабочему телу за это время, равно

где $c_$ - удельная теплоемкость водык Количество теплоты, переданное холодильнику, составляет

где $dm_$ - бесконечно малое количество растаявшего льда. Воспользовавшись соотношением между $Q$ и $T$ для цикла Карно, получим

После разделения переменных $T$ и $m_$ это уравнение будет иметь вид

Проинтегрируем обе части данного уравнения:

где $T_$ - конечная температура воды в нагревателе к моменту, когда весь лед растает. После интегрирования получим

Теперь мы можем определить суммарное количество теплоты, полученное от нагревателя к моменту полного таяния льда:

Читайте также: