Почему в качестве хладагента в компрессионных холодильниках применяется фреон 12 кратко

Обновлено: 13.05.2024

2.3 Хладагенты, применяемые в холодильных установках

Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур. Наиболее распространенные из них — хладон и аммиак.
К холодильным агентам предъявляют ряд требований. При атмосферном давлении температура кипения рабочего тела должна быть достаточно низкой. Давление рабочего вещества в конденсаторе должно быть умеренным, так как в противном случае требуется увеличение прочности и, следовательно, металлоемкости машин.
Немаловажным свойством холодильного агента является его удельная объемная холодопроизводительность.
Хладоносители это жидкости, с помощью которых теплота отводится от охлаждаемого объекта. В холодильной технике продукция охлаждается в холодильной камере непосредственно холодильным агентом. Если это технически осуществить трудно, объект охлаждают при помощи хладоносителя. К нему предъявляют следующие требования: низкая температура замерзания, большая теплоемкость, малая вязкость, небольшая стоимость. Температура замерзания их зависит от концентрации рассола.
Для уменьшения коррозирующего действия рассолов на металл трубопроводов в растворы добавляют так называемые пассиваторы: хромат натрия, бихромат натрия, двухметаллический фосфат натрия. В качестве пассиваторов используют также раствор гашеной извести или каустическую соду.
Для уменьшения потерь на трение и увеличение пропускной способности трубопроводов рекомендуется добавлять в рассолы высокомолекулярные полимеры, так называемые поверхностно-активные вещества (ПАВ), в количестве 0,03. 0,7 %.
Диапазон рабочих тел для использования в компрессорных тепловых насосах на сегодняшний день достаточно широк. Обязательные критерии выбора хладагента включают высокую термическую стабильность, умеренное давление конденсации, высокую скрытую теплоту кипения. Окончательный выбор хладагента представляет собой компромиссное решение.
При выборе хладагента руководствуются его термодинамическими, теплофизическими, физико-химическими и физиологическими свойствами. Важное значение имеет также его стоимость и доступность. Хладагенты не должны быть ядовиты, не должны вызывать удушья и раздражения слизистых оболочек глаз, носа и дыхательных путей человека.
Хладон-12 (R-12) имеет химическую формулу CHF2C12 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами
Хладон-22 (R-22), или дифтормонохлорметан (CHF2C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность хладона-22 примерно в 1,6 раза больше, чем хладона-12.
Аммиак (NH3) — бесцветный газ с удушливым сильным характерным запахом. Аммиак имеет достаточно высокую объемную холодопроизводительность. Производство его основано главным образом на методе соединения водорода с азотом при высоком давлении с наличием катализатора. Аммиак применяют и для получения низких температур (до -70°С) при глубоком вакууме. Теплота парообразования, теплоемкость и коэффициент теплопроводности у аммиака выше, а вязкость жидкости меньше, чем у хладонов. Поэтому он имеет высокий коэффициент теплоотдачи. Стоимость аммиака невысока по сравнению с другими хладагентами.
Как известно, некоторые хладагенты обладают озоноразрушающей способностью, что не может не тревожить международную общественность.
Хлорсодержащие хладагенты, достигая стратосферы разлагаются там ультрафиолетовыми лучами и высвобождают хлор, быстро реагирующий с озоном, разрушая таким образом озоновый слой.
Продолжительность жизни хладагентов в атмосфере также очень важный фактор. Это показатель времени, в течение которого различные вещества сохраняются в атмосфере и могут влиять на окружающую среду. Иными словами, чем дольше химикат или хладон сохраняется в атмосфере, тем он менее экологически безопасен.
В 1985 г. в Вене была принята Конвенция о защите озонового слоя. К ней присоединились 127 государств, включая Россию и страны СНГ.
В 1989 г. вступил в силу Монреальский протокол о постепенном сокращении, а затем и о полном прекращении в 2030 г. выпуска озоноразрушающих хладагентов. К опасным группам были отнесены хладоны R-11, R-12, R-113, R-114, R-115, R-12B1, R-13B1, R-114B2. В 90-х гг. текст протокола был ужесточен путем введения ограничений не только на производство, но и на торговлю, экспорт и импорт любой холодильной техники, содержащей озоноразрушающие вещества.
Российская Федерация приняла на себя обязательства, вытекающие из Монреальского протокола об охране озонового слоя. Согласно принятым решениям, R-502 запрещен к производству с 1 января 1996 г. Для R-22 установлены более отдаленные сроки — сокращение производства и использования с 2005 г. и полный запрет начиная с 2020 г.
Для замены R-502 и R-22 основными мировыми производителями химической продукции были разработаны и выпускаются переходные (с содержанием хлорфторуглеводородов) и озонобезопасные (состоящие только из фторуглеводородов) смеси хладагентов.
К переходным хладагентам относятся R-402, R-403B и R-408A, которые могут использоваться в действующем оборудовании. Большая часть этих новых рабочих веществ появилась сегодня на российском рынке.
Озонобезопасные хладагенты R-507, R-404A, R-134A можно рекомендовать как для работы в новом оборудовании, так и для реконструкции низкотемпературных холодильных систем. Они разработаны для замены R-22 в действующем и выпускающему в настоящее время оборудовании [9].

Фреон: для чего нужен в холодильнике, его вред, устранение утечки

Фреон: для чего нужен в холодильнике, его вред, устранение утечки

Холодильники совершили настоящий прорыв в быту и сфере производства и хранения пищевых продуктов. Как и вся техника, холодильные установки бытового назначения требуют соответствующего ухода и периодического технического осмотра, поскольку в его работе задействован газ, который при утечке делает аппарат непригодным к использованию.

Фреон – хладагент бытовых холодильников

В небольших количествах фреон (являющийся хладагентом бытовой холодильной установки) для здоровья безвреден. При нагревании и превращении в газообразное состояние он охлаждает воздух внутри холодильных камер, а во время конденсации отдает забранное тепло окружающей среде. Работу холодильника обеспечивает постоянная циркуляция этого газа по системе. В случае его утечки нужно производить ремонт холодильника. Причины утечки:

  • заводской брак;
  • повреждение трубки испарителя;
  • коррозия.

Виды фреонов, используемых в холодильных агрегатах

Что собою представляет

Воздействие на организм

Газ входит в состав атмосферы, экологически безопасен, высокая концентрация может привести к взрыву. Широко применяется в современных холодильных установках как хладагент

При концентрации от 31 грамма на кубометр может стать причиной взрыва

Газ бесцветный, токсичностью не обладает, не воспламеняется, экологически безопасный, широко используется в современных холодильниках

Безопасен для здоровья людей

Старые модели холодильников используют этот газ. Пахнет хлороформом, цвета не имеет. Пожаробезопасен. Выделяет токсичные продукты при попадании в открытый огонь. Разрушающе действует на озоновый шар планеты

Выделяет токсины при очень высоких температурах

Не используется в современных холодильных агрегатах, запах схож с эфиром, экологически вреден, не воспламеняется

При контакте с огнем выделяет токсичные вещества, вреден только при очень высоких концентрациях

Опасен ли фреон из холодильника для человека? Как видно из данных таблицы в тех количествах, которые имеются в современных бытовых холодильных агрегатах (около 200 граммов), фреон для людей безвреден, но для самоуспокоения помещения следует проветрить.

Утечка фреона и ее устранение

Работа любой холодильной установки напрямую связана с присутствием в системе хладагента. Утечка фреона в холодильнике – проблема, которую в Ростове-на-Дону можно решить, обратившись в специализированную компанию и вызвать мастера по ремонту холодильников на дом.

При работающем моторе температура в холодильных камерах такая же, как и во всем доме – первый сигнал о том, что система циркуляции фреона повреждена. При полной утечке мотор вообще работать не будет. Явный признак – при сбивании льда острым предметом появилось шипение.

Течеискатель фреона

Течеискатель (оборудование для определения места повреждения системы) реагирует на концентрацию фреона. Холодильник нужно отключить и проветрить помещения. Ремонт производится по следующей схеме:

Поиск повреждения. Визуальный осмотр проводится для выявления ржавчин на контуре или вздутости в области задней стенки. С помощью течеискателя выявляется точное место дефекта.

Устранение дефекта. В доступных местах это не вызывает затруднений. Контур можно запаять или заменить его часть. Если утечка в запечатанных местах – производят вскрытие.

Замена фильтра с целью исключения попадания воды в контур.

Герметичность - проверяется нагнетанием азота и проверкой давления в системе.

2.3 Хладагенты, применяемые в холодильных установках

Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур. Наиболее распространенные из них — хладон и аммиак.
К холодильным агентам предъявляют ряд требований. При атмосферном давлении температура кипения рабочего тела должна быть достаточно низкой. Давление рабочего вещества в конденсаторе должно быть умеренным, так как в противном случае требуется увеличение прочности и, следовательно, металлоемкости машин.
Немаловажным свойством холодильного агента является его удельная объемная холодопроизводительность.
Хладоносители это жидкости, с помощью которых теплота отводится от охлаждаемого объекта. В холодильной технике продукция охлаждается в холодильной камере непосредственно холодильным агентом. Если это технически осуществить трудно, объект охлаждают при помощи хладоносителя. К нему предъявляют следующие требования: низкая температура замерзания, большая теплоемкость, малая вязкость, небольшая стоимость. Температура замерзания их зависит от концентрации рассола.
Для уменьшения коррозирующего действия рассолов на металл трубопроводов в растворы добавляют так называемые пассиваторы: хромат натрия, бихромат натрия, двухметаллический фосфат натрия. В качестве пассиваторов используют также раствор гашеной извести или каустическую соду.
Для уменьшения потерь на трение и увеличение пропускной способности трубопроводов рекомендуется добавлять в рассолы высокомолекулярные полимеры, так называемые поверхностно-активные вещества (ПАВ), в количестве 0,03. 0,7 %.
Диапазон рабочих тел для использования в компрессорных тепловых насосах на сегодняшний день достаточно широк. Обязательные критерии выбора хладагента включают высокую термическую стабильность, умеренное давление конденсации, высокую скрытую теплоту кипения. Окончательный выбор хладагента представляет собой компромиссное решение.
При выборе хладагента руководствуются его термодинамическими, теплофизическими, физико-химическими и физиологическими свойствами. Важное значение имеет также его стоимость и доступность. Хладагенты не должны быть ядовиты, не должны вызывать удушья и раздражения слизистых оболочек глаз, носа и дыхательных путей человека.
Хладон-12 (R-12) имеет химическую формулу CHF2C12 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами
Хладон-22 (R-22), или дифтормонохлорметан (CHF2C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность хладона-22 примерно в 1,6 раза больше, чем хладона-12.
Аммиак (NH3) — бесцветный газ с удушливым сильным характерным запахом. Аммиак имеет достаточно высокую объемную холодопроизводительность. Производство его основано главным образом на методе соединения водорода с азотом при высоком давлении с наличием катализатора. Аммиак применяют и для получения низких температур (до -70°С) при глубоком вакууме. Теплота парообразования, теплоемкость и коэффициент теплопроводности у аммиака выше, а вязкость жидкости меньше, чем у хладонов. Поэтому он имеет высокий коэффициент теплоотдачи. Стоимость аммиака невысока по сравнению с другими хладагентами.
Как известно, некоторые хладагенты обладают озоноразрушающей способностью, что не может не тревожить международную общественность.
Хлорсодержащие хладагенты, достигая стратосферы разлагаются там ультрафиолетовыми лучами и высвобождают хлор, быстро реагирующий с озоном, разрушая таким образом озоновый слой.
Продолжительность жизни хладагентов в атмосфере также очень важный фактор. Это показатель времени, в течение которого различные вещества сохраняются в атмосфере и могут влиять на окружающую среду. Иными словами, чем дольше химикат или хладон сохраняется в атмосфере, тем он менее экологически безопасен.
В 1985 г. в Вене была принята Конвенция о защите озонового слоя. К ней присоединились 127 государств, включая Россию и страны СНГ.
В 1989 г. вступил в силу Монреальский протокол о постепенном сокращении, а затем и о полном прекращении в 2030 г. выпуска озоноразрушающих хладагентов. К опасным группам были отнесены хладоны R-11, R-12, R-113, R-114, R-115, R-12B1, R-13B1, R-114B2. В 90-х гг. текст протокола был ужесточен путем введения ограничений не только на производство, но и на торговлю, экспорт и импорт любой холодильной техники, содержащей озоноразрушающие вещества.
Российская Федерация приняла на себя обязательства, вытекающие из Монреальского протокола об охране озонового слоя. Согласно принятым решениям, R-502 запрещен к производству с 1 января 1996 г. Для R-22 установлены более отдаленные сроки — сокращение производства и использования с 2005 г. и полный запрет начиная с 2020 г.
Для замены R-502 и R-22 основными мировыми производителями химической продукции были разработаны и выпускаются переходные (с содержанием хлорфторуглеводородов) и озонобезопасные (состоящие только из фторуглеводородов) смеси хладагентов.
К переходным хладагентам относятся R-402, R-403B и R-408A, которые могут использоваться в действующем оборудовании. Большая часть этих новых рабочих веществ появилась сегодня на российском рынке.
Озонобезопасные хладагенты R-507, R-404A, R-134A можно рекомендовать как для работы в новом оборудовании, так и для реконструкции низкотемпературных холодильных систем. Они разработаны для замены R-22 в действующем и выпускающему в настоящее время оборудовании [9].

Холодильный агент (хладагент)—используемая в холодильной системе рабочая среда, которая поглощает теплоту при малых значениях температуры и давления и выделяет теплоту при более высоких температуре и давлении. Этот процесс сопровождается изменением агрегатного состояния рабочей среды. (ГОСТ Р 12.2.142—99).

Способность переходить из жидкого состояния в газообразное – это свойство всех веществ, но только некоторые из них подходят для использования в качестве хладагентов.

Для получения более низких температур (-110°C) были задействованы новые виды хладагентов: метан (CH4), этилен (C2H4), этан (C2H6), пропан (C3H8), бутан (C4H10) и пропилен (C3H6). К недостаткам этих веществ относят то, что они огнеопасны и при взаимодействии с воздухом образуют взрывоопасную смесь. Кроме того, из-за малой молекулярной массы, оборудование для их применения в качестве хладагентов должно иметь большую массу и крупные габариты.

В конце тридцатых годов прошлого века путем галогенизации насыщенных углеводородов хлором и фтором были синтезированы производные продукты, названные фреоны или хлорфтороуглероды, которые удовлетворяли техническим требованиям для применения в холодильных системах. Основой для получения хлорофтороуглеродов могут быть все насыщенные углеводороды (CmHxFyClz, 2m+2=n+x+y+z). Формула для определения количества возможных основных соединений выглядит так: (n+1)(n+2)/2. Например, метан создает 15 соединений, этан вместе с изомерами – 55, пропан – 332, а бутан – 1000.

Существуют следующие критерии выбора соединений для создания хладагента: большое количество атомов фтора (такие соединения менее токсичны и проявляют слабую химическую активность по отношению к металлам); малое количество атомов водорода (чем оно меньше, тем ниже воспламеняемость).

Далеко не все соединения галогенов и углерода (без водорода) горючи, но при взаимодействии с воздухом они образуют ядовитый газ фосген.

Ранее во многих холодильных системах использовался только хладагент ХФУ R12. В 1974 году учеными было установлено, что хлорфторуглероды разрушают озоновый слой Земли. Их использование было запрещено и им потребовалось найти замену.

Различают следующие типы хладагентов:

1. Предельные углеводороды и их галогенные производные

Они обозначаются буквой R с тремя цифрами после нее, т. е. R c d u, где:

  • с (сотни)—число атомов углерода, уменьшенное на единицу;
  • d (десятки)—число атомов водорода, увеличенное на единицу;
  • u (единицы)—число атомов фтора.
    В химической формуле соединения сумма атомов водорода, фтора и хлора равна 4 для производных метана, 6—для производных этана, 8—для производных пропана и т.д.

2. Непредельные углеводороды и их галогенные производные

Способ цифрового обозначения тот же самый, что и в предыдущем случае, но слева после буквы добавляется 1 для обозначения тысяч.

3. Циклические углеводороды и их производные

Для хладагентов на основе циклических углеводородов и их производных после буквы R перед цифровым индексом вставляется буква С (например, RC318).

4. Органические соединения

Им присвоена серия 600, а номер каждого хладагента внутри этой серии назначается произвольно (например R600 – бутан).

5. Неорганические соединения

6. Неазеотропные смеси

Неазеатропные смеси – вещества, жидкая и газовая фаза которых в состоянии термодинамического равновесия имеют разный состав. Иными словами, при одном и том же давлении кипения, температура кипения имеет разные значения. Этим хладагентам присвоена серия 400 с произвольным номером для каждого хладагента внутри этой серии.

7. Азеотропные смеси

В отличие от неазеотропных, состав газовой и жидкой фаз этих веществ одинаков, то есть они ведут себя как моновещество. Им присвоена серия 500 с произвольным номером каждого хладагента внутри серии.

В данном курсе будут рассматриваться особенности монтажа оборудования, работающего на фреонах (хладагенты группы 1).

Хлорфторуглероды (ХФУ, CFC)

Вещества с высоким озоноразрушающим потенциалом (ОРП) запрещены к использованию Монреальским протоколом (международное соглашение о защите озонового слоя Земли). Производство ХФУ (например, R11, R12 и R114) на территории стран Европейского сообщества прекращено.

Гидрохлорфторуглероды (ГХФУ или HCFC)

Имеют невысокую озоноразрушающую способность и классифицируются Монреальским протоколом как переходные вещества. Их использование должно существенно сократиться в начале XXI века. Примером таких хладагентов являются R22, R123 и R124.

Гидрофторуглероды (ГФУ или HFC)

Вещества не содержат хлора, следовательно, имеют нулевой ОРП и не попадают под действие Монреальского протокола. К ним относятся хладагенты R125, R134a и R152a. Хладагент R134a может быть непосредственно использован вместо R12 при минимальной модернизации установки.

Критерии выбора хладагента

Физические свойства

Давление кипения

Давление кипения (абсолютное) должно составлять, по меньшей мере, 1 бар, абс..
При таком давлении воздух и вода не проникают в систему в случае небольших протечек или при использовании в системах сальниковых компрессоров.

Давление конденсации

Давление конденсации должно быть минимальным, чтобы не усложнять конструкцию системы и сократить потребление энергии. Рабочее давление в системе зависит от типа хладагента и конденсатора.

Разность давлений

Размер двигателя компрессора зависит от разности давлений pc—po. Она должна быть как можно меньше.

Степень сжатия

Степень сжатия должна быть как можно меньше. С ростом степени сжатия pc/po снижается коэффициент подачи компрессора λ и, следовательно, его производительность. Поэтому следует использовать хладагент с плоской кривой упругости пара.

Температура в конце сжатия

Учитывая, что смазочные материалы сохраняют стабильность в ограниченном диапазоне температур, температура в конце сжатия должна быть как можно ниже. Температура зависит от хладагента, степени перегрева всасываемого пара, а также от давления конденсации в системе и компрессоре.

Критическая температура внешней стенки трубопровода составляет от 120 до 140 °C.

Поэтому решающим фактором является температура пластин клапана на компрессоре, которая составляет около 160 °C. При более высокой температуре масло начинает коксоваться.

Коэффициент растворимости в воде

Присутствие воды в системе охлаждения нежелательно. Чем выше коэффициент растворимости хладагента в воде, тем больше влаги он может поглотить, предохраняя тем самым систему от поломок.

Учитывая способность сложноэфирных синтетических масел и полиалкиленгликолевых масел поглощать воду в большом количестве, уровень влажности в системе необходимо контролировать. Поставляемые хладагенты содержат остаточную влагу в количестве, не превышающем 20 промилле.

Удельная теплота парообразования и плотность газа на всасывании

Чтобы сделать вывод об охлаждающих свойствах определенного хладагента, необходимо учитывать эти две переменные. Чем большей удельной теплотой парообразования обладает хладагент, тем меньший рабочий объём цилиндров компрессора потребуется для достижения той же самой холодопроизводительности. Чтобы компрессор доставлял максимальное количество хладагента за один ход поршня, хладагент при входе в компрессор должен обладать максимально возможной плотностью.

Смешиваемость с маслами

Для нормальной циркуляции масла в охлаждающих системах необходима стопроцентная смешиваемость жидкого хладагента с маслом. При полной нерастворимости масла в хладагенте, как, например, в случае с аммиаком, применяют масла со специфическими свойствами или холодильные системы специальной конструкции.

Химические свойства

Химическая активность хладагента по отношению к смазочным и другим видам материалов недопустима при любых условиях работы системы. Сами хладагенты обладают средней химической активностью. Этот факт следует принимать в расчет при смешивании хладагента и масла.

Физиологические свойства

Хладагент должен иметь высокую физиологическую совместимость (нетоксичность). Для R 134a максимально допустимая концентрация (предельное значение) составляет 1000 промилле. Вдыхание его паров при малой концентрации в течение 8 часов не оказывает вредного воздействия на организм человека. Высокое содержание хладагента в воздухе может привести к удушью, т.к. снижается доля кислорода (особенно у пола, так как R 134a, как и другие фреоны, тяжелее воздуха). Могут появиться головная боль, тошнота, потеря сознания.

Под воздействием открытого огня, ультрафиолета, при контакте с горячими или раскаленными металлическими поверхностями, хладагент распадается; продукты распада хладагента ядовиты.

Соответствие требованиям по охране окружающей среды

Использование, производство и утилизация хладагентов не должны оказывать отрицательного влияния на окружающую среду.

Озоноразрушающий потенциал (ОРП, ODP)

За последние несколько десятилетий естественная концентрация озона в стратосфере планеты снизилась, и слой, защищающий от вредного излучения Солнца, истончился. Причиной этого стали галогены (хлор, фтор и бром), которые выделяются из хлорфторуглеродов под воздействием ультрафиолета.

На международной конференции в Монреале в 1987 году был подписан Монреальский протокол, согласно которому страны-участники договорились к концу 1995 года свернуть производство веществ, разрушающих озоновый слой.

Поскольку некоторые хлорфторуглероды достигают высоты озонового слоя в течение 15-20 лет, истощение озонового слоя продолжится в ближайшем будущем.

Наиболее сильное истощение озонового слоя (более 50%) наблюдается в районе полюсов земли. Над Антарктикой можно наблюдать так называемую озоновую дыру в период с сентября по ноябрь, во время антарктической весны. В северном полушарии истощение проявляется зимой и весной. В период с 1968 по 1992 снижение уровня концентрации озона над Европой достигало в среднем трех процентов за 10 лет. В последние несколько лет этот показатель поднимался до 5 процентов. Увеличение интенсивности солнечной радиации повлечет за собой рост случаев заболевания раком кожи и катарактой.

ОРП хладагентов с самой высокой озоноразрушающей способностью, таких как R11 и R12, равен 1,0 (100%). ОРП других хладагентов оценивается в сравнении с ОРП R11.

Потенциал глобального потепления (ПГП, GWP)

Жизнь на Земле зависит от солнечной энергии. Однако большая ее часть отражается или отдается в космическое пространство в ходе испарения. Естественные парниковые газы, такие как водяной пар и углекислый газ, препятствуют отражению тепловой энергии и сохраняют ее в атмосфере Земли. Такой эффект можно сравнить с функцией стеклянного покрытия в парнике. При отсутствии парниковых газов средняя температура на поверхности Земли составляла бы не 18°C, а -15°C. Парниковый эффект, благотворный по своей сути, усиливается с увеличением содержания парниковых газов в атмосфере (CO2, пары хладагентов, метан, используемый в сельском хозяйстве). С наступлением эпохи индустриализации содержание углекислого газа в атмосфере неуклонно растет.

Усиление парникового эффекта стало причиной повышения средней температуры на Земле на 1-1,5 К. Глобальное потепление со временем приведет к повышению уровня мирового океана, изменению климата и погодным аномалиям.

Потенциал глобального потепления хладагентов определяется в ПГП (единица для диоксида углерода с временным горизонтом 100 лет) или H-GWP (единица для хладагента R11 с временным горизонтом 100 лет).

ПГП R12 равен 8500, R 134a – 1300.

Величина потенциала глобального потепления определяется путем моделирования реакций, происходящих в атмосфере, поэтому ее значения являются приблизительными.

Суммарный эквивалент теплового воздействия (TEWI)

Величина суммарного эффекта теплового воздействия (прямого и косвенного) определяется не только тепловым воздействием хладагента, но и системы, в которой он используется. Также принимается в расчет тепловое воздействие, вызванное энергетическими потребностями холодильной установки, высвобождением хладагентов во время утилизации и утечек. Различают прямой парниковый эффект, вызванный хладагентами (протечки, утечки при ремонте и утилизации) и косвенный парниковый эффект (выделение CO2 при выработке электроэнергии). Недостатком при определении суммарного эффекта теплового воздействия является игнорирование теплового воздействия при производстве каждого отдельного хладагента.

Каждый производитель хладагентов выпускает продукцию под собственным наименованием, например:

  • Du Pont de Nemour имеет торговую марку Фреон (Freon) или Сува (Suva);
  • Elf Atochem—торговую марку Форан (Fo-ran);
  • Solvay—торговую марку Кальтрон (Kal-tron);
  • Montedison—торговую марку Альгофрен (Algofrene);
  • ICI—торговую марку Клеа (Klea);
  • Daikin Kogyo—торговую марку Дайфлон (Daiflon) и т.д.
    Поэтому один и тот же хладагент может обозначаться по-разному, однако цифровой код остается постоянным вне зависимости от компании-производителя.

Для перевозки и хранения хладагентов используется сосуды следующих типоразмеров:

Читайте также: