Реактивный двигатель вид топлива рабочее тело нагреватель холодильник

Обновлено: 19.05.2024

В данном разделе вы уже познакомились с устройством и принципом работы двух видов теплового двигателя: двигателя внутреннего сгорания и паровой турбины. Используя эти механизмы, мы совершаем какую-то работу. Очевидно, что работа будет совершаться за счет энергии, которая выделяется при сгорании топлива. Но большая часть этой энергии теряется в окружающей среде. То есть, эта часть энергии не используется полезно.

Следовательно, и работу таких механизмов тогда нужно рассчитывать специальным образом. Для этого в физике разделяют работу на полную и полезную, вводят понятие коэффициента полезного действия (КПД) механизма. В данном уроке мы познакомимся с этими величинами и рассмотрим решение задач с использованием КПД.

Полезная работа теплового двигателя

Для того чтобы судить о полезной работе теплового двигателя, обратимся еще раз к его устройству. Если рассматривать его принцип работы, то устройство любого теплового двигателя можно представить в виде простой схемы (рисунок 1).

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника.

Рабочим телом является газ или пар. Например, в паровой турбине – это пар, в газовой – газ, в двигателе внутреннего сгорания – смесь паров бензина и воздуха.

Этот газ получает некоторое количество теплоты $Q_1$ от нагревателя. Под нагревателем подразумевается не какое-то специальное механическое устройство, как можно подумать. Нагреватель в схеме теплового двигателя – это горящее топливо.

Газ нагревается и расширяется. Так он совершает работу $A_п$, используя свою внутреннюю энергию.

Но важно понимать, что часть этой внутренней энергии $Q_2$ не совершает какую-то полезную для нас работу. Она передается вместе с отработанным паром или выхлопными газами атмосфере – холодильнику.

В качестве холодильника может использоваться резервуар с водой. Отработавший пар будет в таком случае приносить дополнительную пользу – нагревать воду для ее дальнейшего использования. Но этот процесс уже требует отдельного рассмотрения.

Итак, нас интересует именно та часть энергии топлива, выделяемая при его сгорании, которая превращается в полезную работу. От величины этой части энергии зависит экономичность двигателя.

Для этой характеристики мы вводим новое понятие – коэффициент полезного действия (КПД) теплового двигателя.

КПД теплового двигателя

Коэффициент полезного действия (КПД) теплового двигателя – это отношение совершенной полезной работы двигателя к энергии, полученной от нагревателя.

КПД теплового двигателя также как и КПД простейших механизмов, изученных вами в прошлом курсе, обозначается греческой буквой “эта” – $\eta$ и выражается в процентах.

Формула для расчета КПД теплового двигателя имеет следующий вид:

где $A_п$ – полезная работа,
$Q_1$ – количество теплоты, полученное от нагревателя,
$Q_2$ – количество теплоты, отданное холодильнику,
$Q_1 – Q_2 = A_п$ – количество теплоты, которое пошло на совершение работы.

Например, при сгорании топлива выделяется определенное количество энергии. Одна пятая этой энергии пошла на совершение полезной работы. Это означает, что КПД двигателя равен $\frac$ или $20 \%$.

Средние значения КПД различных тепловых двигателей

В таблице 1 представлены средние значения КПД некоторых двигателей.

ДвигательКПД, %
Паровой двигатель8
Двигатель внутреннего сгорания18 – 40
Газовая турбина25 – 30
Паровая турбина40
Дизельный двигатель40 – 44
Реактивный двигатель на жидком топливе47
Таблица 1. КПД различных двигателей

Обратите внимание, что КПД всегда меньше единицы – меньше $100 \%$. Это означает, что холодильник всегда получает некоторое количество теплоты от нагревателя.

Одной из важнейших технических задач при проектировании двигателей является повышение значения КПД.

Примеры задач

  1. КПД теплового двигателя составляет $30 \%$. Рассчитайте полезную работу, совершенную двигателем, если он получил от нагревателя $600 \space кДж$ энергии.

Дано:
$\eta = 30 \%$
$Q_1 = 600 \space кДж$

СИ:
$6 \cdot 10^5 \space Дж$

$A_п – ?$

Посмотреть решение и ответ

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$\eta = \frac$.

Выразим отсюда полезную работу $A_п$:
$A_п = \eta \cdot Q_1$.

Чтобы использовать эту формулу необходимо значение КПД, выраженное в процентах перевести в дробь:
$\eta = 30 \% = 0.3$

Рассчитаем $A_п$:
$A_п = 0.3 \cdot 6 \cdot 10^5 \space Дж = 1.8 \cdot 10^5 \space Дж$.

Ответ: $A_п = 1.8 \cdot 10^5 \space Дж$.

  1. За цикл работы тепловая машина получает от нагревателя количество теплоты, равное $155 \space Дж$, и отдает холодильнику количество теплоты равное $85 \space Дж$. Вычислите КПД тепловой машины.

Дано:
$Q_1 = 155 \space Дж$
$Q_2 = 85 \space Дж$

$\eta – ?$

Посмотреть решение и ответ

Решение:

Используем формулу для расчета КПД:
$\eta = \frac \cdot 100 \%$.

Ответ: $\eta = 45 \%$.

  1. На рисунке 2 изображен один из четырех тактов двигателя внутреннего сгорания. Опишите, что происходит в его процессе.
    При этом была совершена работа, равная $2.3 \cdot 10^4 \space кДж$, и израсходован бензин массой $2 \space кг$. Вычислите КПД этого двигателя. Удельная теплота сгорания бензина равна $4.6 \cdot 10^7 \frac$.

Дано:
$A_п = 2.3 \cdot 10^4 \space кДж$
$m = 2 \space кг$
$q = 4.6 \cdot 10^7 \frac$

СИ:
$2.3 \cdot 10^7 \space Дж$

$\eta -?$

Посмотреть решение и ответ

Решение:

На рисунке 2 оба клапана закрыты, а свеча подожгла горючую смесь. Поршень движется вниз и вращает коленчатый вал. Это третий такт – рабочий ход. Именно в ходе этого такта рабочее тело двигателя совершает полезную работу $A_п$.

Запишем формулу для расчета КПД этого двигателя:
$\eta = \frac$,
где $Q_1$ – это количество теплоты, получаемое двигателем от нагревателя.

В нашем случае нагревателем является бензин. Мы знаем его массу и удельную теплоту сгорания, поэтому можем рассчитать количество теплоты, выделенное при его сгорании по формуле:
$Q = Q_1 = qm$.
$Q_1 = 2 \space кг \cdot 4.6 \cdot 10^7 \frac = 9.2 \cdot 10^7 \space Дж$.


Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Рабочее тело с большой скоростью истекает из двигателя, и, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой температуры (т. н. тепловые реактивные двигатели), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (см. ионный двигатель).

Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть он создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.

Содержание

Классы реактивных двигателей

Существует два основных класса реактивных двигателей:

    — тепловые двигатели, которые используют энергию окисления горючегокислородомвоздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха. — содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Составные части реактивного двигателя

Любой реактивный двигатель должен иметь, по крайней мере, две составные части:

Основные технические параметры реактивного двигателя

Основным техническим параметром, характеризующим реактивный двигатель, является тяга (иначе — сила тяги) — усилие, которое развивает двигатель в направлении движения аппарата.

Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей.

История

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструктором и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель был получен в 1930 году Фрэнком Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в Германии в небо поднялся первый реактивный самолет — Хейнкель He 178, оснащённый двигателем HeS 3, разработанный Охайном.

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Реактивный двигатель" в других словарях:

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной поток газов, в реактивном двигателе горючее… … Научно-технический энциклопедический словарь

Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела (См. Рабочее тело); в результате истечения рабочего тела из сопла двигателя образуется… … Большая советская энциклопедия

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — (двигатель прямой реакции) двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели … Большой Энциклопедический словарь

Реактивный двигатель — двигатель, преобразующий какой либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создает реактивную тягу. В реактивном двигателе сочетаются собственно двигатель и движитель. Основной частью любого… … Морской словарь

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Современная энциклопедия

Реактивный двигатель — РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Иллюстрированный энциклопедический словарь

РЕАКТИВНЫЙ ДВИГАТЕЛЬ — двигатель прямой реакции, реактивная (см.) которого создаётся отдачей вытекающей из него струи рабочего тела. Различают воздушно реактивные и ракетные (см.) … Большая политехническая энциклопедия

реактивный двигатель — двигатель, тяга которого создаётся реакцией (отдачей) вытекающей из него струи рабочего тела. Под рабочим телом применительно к двигателям понимают вещество (газ, жидкость, твёрдое тело), с помощью которого тепловая энергия, выделяющаяся при… … Энциклопедия техники

реактивный двигатель — (двигатель прямой реакции), двигатель, тяга которого создаётся реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели. * * * РЕАКТИВНЫЙ ДВИГАТЕЛЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой… … Энциклопедический словарь

Устройство РД

Новые технологии

Реактивный двигатель

Большинство современных самолетов используют реактивные двигатели

Мы живем в эпоху реактивной авиации – это знакомо любому, даже не слишком сведущему в технических вопросах, человеку. Поршневой мотор с традиционным винтом, хотя и не совсем канул в Лету, но лидирующие позиции он сдал давным-давно. Подавляющее большинство современных самолетов – пассажирских, транспортных и военных – оснащены различными типами реактивных двигателей. Именно благодаря моторам подобно конструкции авиация превратилась в удобный, массовый и быстрый вид транспорта.

Реактивный двигатель (РД) – это двигатель, создающий силу тяги путем преобразования внутренней энергии топлива в кинетическую рабочего тела. Оно истекает из сопла со значительной скоростью, и, согласно закону сохранения импульса, толкает его в противоположную сторону. Это и есть принцип работы реактивного двигателя. Особенностью РД является его сочетание с движителем, усилие тяги он создает только за счет контакта с рабочим телом, без опоры или взаимодействия с иными объектами. Первым прототипом РД можно назвать шар Герона, созданный еще в I веке н. э.

В наши дни основной областью применения реактивного двигателя является авиация и ракетостроение, но не только. Их пытались устанавливать на поезда и автомобили, правда, широкого распространения такие транспортные средства так и не получили. Турбины используются при перекачке природного газа, причем многие из подобных агрегатов разработаны на базе авиационных ВРД и имеют аналогичный принцип действия.

В данном материале мы подробно коснемся конструкции устройств, относящихся к реактивным двигателям. Рассмотрим, как работает реактивный двигатель, представим их классификацию, а также основные особенности применения.

Немного теории или как летают самолеты

Устройство РД

Любой реактивный двигатель – это сложнейший механизм, состоящий из огромного числа элементов

Основным параметром, определяющим характеристики работы любого реактивного двигателя, является тяга (или сила тяги), которую мотор развивает в сторону движения летательного аппарата. Она описывается формулой:

P = G × (c – v), где P – сила тяги, G – расход рабочего тела в секунду, c – скорость истечения реактивной струи, v – скорость полета.

Для ее создания необходимо несколько составляющих:

  • Источник первичной энергии, превращающийся в кинетическую энергию реактивной струи;
  • Рабочее тело, которое образует поток и выбрасывается из РД;
  • Сам реактивный двигатель, где происходят обозначенные процессы.

В ВРД в качестве первичной используется энергия сгорания химических веществ, то есть – это типичный тепловой двигатель. Главное условие функционирования подобной системы – превышение давления рабочего тела над атмосферным перед началом цикла расширения. Причем чем больше эта разница, тем выше эффективность ВРД. Все существующие в настоящий момент типы реактивных двигателей в первую очередь отличаются способом достижения этого перепада давлений, именно он и определяет их основные технические особенности.

Рабочее тело воздушных реактивных двигателей представляет собой смесь продуктов сгорания топлива с фракциями воздуха, оставшимися после использования кислорода. Для окисления 1 кг керосина – основного топлива для реактивных двигателей – необходимо примерно 15 кг воздуха.

В состав конструкции любого ВРД входит камера сгорания, где происходит окисление горючего, и реактивное сопло, из которого выбрасывается раскаленный газ, а тепловая энергия превращается в кинетическую, создавая при этом тягу.

История развития реактивных двигателей

Эволюция реактивных двигателей неразрывно связана с развитием авиации. На протяжении практически всей ее истории улучшение характеристик летательных аппаратов обеспечивалось главным образом непрерывным совершенствованием авиамоторов.

Первые самолеты были оснащены поршневыми двигателями, и подобная ситуация оставалась неизменной на протяжении нескольких десятилетий. Постепенно их конструкция улучшалась, возрастала мощность, уменьшался расход топлива. Но к середине 40-х годов прошлого века стало понятно, что поршневой двигатель самолета достиг своего предела, и для дальнейшего развития необходимы совершенно другие технологии и новые конструкторские решения.

Попытки создания летательных аппаратов с реактивным двигателем предпринимались еще на заре авиации. В 1913 году французский инженер Лорен получил патент на конструкцию прямоточного реактивного двигателя (ПВРД). В 1921 году француз Максим Гийом создал проект двигателя, имевшего основные элементы современного воздушно-реактивного двигателя: камеру сгорания, компрессор и одну турбину, приводимую в движение выхлопными газами. Однако изобретатель так и не смог никого заинтересовать своим проектом. В 1928 году авиатор Фриц Стамер впервые поднялся в небо на аппарате с ракетным приводом.

Фау-1

Немецкий “самолет-снаряд” Фау-1 с ПуВРД на стартовой позиции. Именно такими гитлеровцы обстреливали Лондон

Интересовались изучением данной темы и в России. Важный вклад в развитие реактивного движения внесли Кибальчич, Жуковский, Мещерский, Циолковский. Последний сделал обоснование полета ракеты с жидкостным двигателем (ЖРД), а также описал многие особенности его конструкции.

В 1930 году англичанин Фрэнк Уиттл получил патент на конструкцию работоспособного турбореактивного двигателя, позже он основал компанию, создавшую первые британские РД. В 1935 году немецкий изобретатель Ганс фон Охайн разработал турбореактивный двигатель HeS, а в 1939 году в небо поднялся первый в мире летательный аппарат с ТРД. Скорость первого самолета с реактивным двигателем He 178 была выше, чем у самой быстрой поршневой машины (700 против 650 км/ч), правда, при этом он был менее экономичен и, соответственно, имел меньший радиус действия.

Me.262

Немецкий Me.262 – один из первых серийных самолетов с ТРД

После войны началась настоящая эра реактивной авиации: ведущие мировые державы занялись интенсивной разработкой ВРД. Уже в 1946 году был создан первый советский реактивный Як-15 на основе трофейных немецких двигателей Jumo-004, а через год в КБ Люльки появился отечественный турбореактивный ТР-1. В 1947 году на вооружение был принят истребитель МиГ-15, оснащенный мотором РД-45. В середине 50-х годов началось серийное производство первого советского пассажирского реактивного самолета Ту-104. К этому времени СССР превратился в одного из лидеров в области авиационного моторостроения. Дальнейшее развитие технологий позволило создать двигатели, с помощью которых самолеты сначала преодолели звуковой барьер, а затем вышли на сверхзвук.

Какими бывают реактивные моторы?

В настоящее время существует множество типов реактивных двигателей, поэтому классификация их довольно сложна.

Классификация авиадвигателей

Классификация авиационных двигателей

Подобные силовые установки можно разделить на две большие группы:

Ракетный двигатель. Он несет все компоненты для создания рабочего тела, поэтому способен работать в любой среде, в том числе и безвоздушном пространстве.

Воздушно-реактивный двигатель (ВРД), использующий для движения смесь из атмосферного воздуха и продукты сгоревшего топлива.

Благодаря такому принципу работы ВРД имеет большие преимущества перед ракетными двигателями при использовании в пределах земной атмосферы. Любая ракета, кроме топлива, должна нести еще и окислитель, масса которого может в несколько раз превышать вес горючего. В отдельную категорию следует выделить силовые установки, для работы которых используется ядерная или электрическая энергия. С точки зрения энергетической эффективности, химические ракеты уже достигли предела своих возможностей, поэтому для покорения далекого космоса человечеству придется использовать что-то другое.

ВРД можно разделить на две большие группы:

К первой категории относятся устройства, у которых двигатель и тепловая машина не совмещаются в одном агрегате – их условно можно назвать турбовинтовыми. У таких моторов мощность, вырабатываемая турбиной, заставляет вращаться лопасти винта. Именно он создает большую часть тяги (80-85%). У двигателей второй группы тепловая машина и движитель образуют единое целое, а тяга создается за счет газового потока из сопла.

Во вторую группу входят следующие типы моторов:

  • турбореактивный (ТРД);
  • турбовентиляторный (ТРД с высокой степенью двухконтурности);
  • прямоточный;
  • ракетно-прямоточный;
  • пульсирующий воздушно-реактивный (ПуВРД).

Есть еще электродвигатели: асинхронный и синхронный реактивный. Они называются так, потому что их роторы вращаются за счет реакций сил магнитного притяжения, но это не имеет отношения к законам реактивного движения.

Особенности конструкции турбореактивного двигателя

ТРД состоит из следующих элементов:

  • входного устройства;
  • компрессора;
  • камеры сгорания;
  • турбины;
  • сопла.

Во время полета набегающий поток воздуха тормозится во входном устройстве: его скорость превращается в давление. Далее струя воздуха поступает в компрессор, который еще больше увеличивает степень ее сжатия. В камере сгорания происходит нагревание при сжигании топлива. Из нее предельно разогретый и сжатый поток направляется в турбину. Там газы совершают работу, вращая лопатки, которая передается компрессору и другим вспомогательным агрегатам.

Турбореактивный двигатель

Конструкция турбореактивного двигателя

При выходе из турбины ТРД газ имеет давление, значительно превосходящее атмосферное. Благодаря этому достигается высокая скорость его истечения из выходного сопла, что создает реактивную тягу.
В 60-е и 70-е годы прошлого столетия ТРД широко применялись на различных типах гражданских и военных самолетов. Позже им на смену пришли двухконтурные турбореактивные двигатели (ТРДД), имеющие лучший КПД, особенно при полетах на дозвуковых скоростях. По существу, сегодня они являются основными моторами современной авиации. Каков же принцип работы ВРД подобного типа?

Внутренний (первый) контур любого ТРДД представляет собой, по сути, обычный турбореактивный двигатель. Воздух, пройдя воздухозаборник, попадает в низконапорный компрессор, называемый еще вентилятором. После этого он разделяется на два потока: один, из которых попадает во внутренний контур, где проходит обычный для ТРД цикл, описанный выше. Второй входит в наружный контур, минуя турбину и камеру сгорания, и попадает в сопло, где смешивается с потоком, выходящим из первого контура. Такой тип двигателя называется ТРДД со смешением потоков.

Благодаря наличию внешнего контура общая скорость истечения газа из сопла уменьшается, что повышает тяговый КПД. Важнейшей характеристикой любого ТРДД является степень его двухконтурности – это отношение расхода воздуха через внутренний и внешний контур. Двигатели с большой степенью двухконтурности (выше 2) называются турбовентиляторными. Главным недостатком моторов этого типа является их значительные размеры и масса, а достоинством – высокая экономичность. Турбовентиляторными двигателями оснащается большинство коммерческих авиалайнеров и транспортных самолетов.

Существует несколько способов повышения эффективности работы ТРД и ТРДД:

  • форсажная камера;
  • регулируемое сопло;
  • управление вектором тяги.

Любой ТРД имеет резерв мощности: избыток кислорода в камере сгорания. Однако использовать его напрямую – через увеличение впрыска топлива – нельзя: более высокую температуру не выдерживают детали двигателя. Конструкторы выбрали другой путь, и он оказался правильным: между турбиной и соплом сжигается дополнительное топливо, что увеличивает температуру рабочего тела и значительно повышает тягу (до 1,5 раза). Форсажные камеры в основном устанавливаются на боевых самолетах.

Турбовентиляторный двигатель

Конструкция турбовентиляторного двигателя. Именно таким мотором оснащаются современные пассажирские лайнеры

Регулируемое сопло состоит из подвижных продольных элементов, управляя положением которых, можно изменять геометрию самой узкой части выходного отверстия двигателя. Это позволяет оптимизировать работу мотора на разных его режимах.

Управление вектором тяги производится с помощью специальных отклоняемых сопел, которые позволяют изменять поток рабочего тела относительно оси двигателя. Такая конструкция несколько усложняет управление самолетом, но существенно увеличивает его маневренность и взлетно-посадочные характеристики.

Прямоточные воздушно-реактивные двигатели

ПВРД – самый простой тип реактивного двигателя по своему устройству. В нем вообще нет движущихся частей. Повышенное давление, необходимое для работы, достигается за счет торможения встречного потока воздуха. Любой ПВРД состоит из трех компонентов:

  • диффузора;
  • камеры сгорания;
  • сопла.

В диффузоре уменьшается скорость потока воздуха и повышается его давление, затем в камере сгорания он нагревается за счет окисления топлива, после чего происходит расширение рабочего тела в сопле и возникает реактивная тяга. Существуют три вида ПВРД:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Дозвуковые ПВРД имеют очень низкий термический КПД, поэтому серийно в настоящее время не используются.

На сверхзвуковой скорости прямоточный двигатель весьма эффективен, при скорости в 3 Маха степень повышения давления вполне сравнимо с аналогичным показателем ТРД.

Гиперзвуковой прямоточный реактивный двигатель (ГПВРД) предназначен для полетов на скоростях выше 5 Махов. Сегодня созданием подобных силовых установок занимаются во многих странах мира, но они все еще остаются на уровне единичных прототипов.

Самолет будущего с ПРВД

Гиперзвуковые летательные аппараты будущего, скорее всего, будут оснащаться ПРВД

Отдельно следует упомянуть о ядерных прямоточных двигателях, разработка которых велась в 60-е и 70-е годы. Воздух в таких силовых установках нагревался за счет тепла работающего ядерного реактора, размещенного в камере сгорания. Американцы даже сумели построить подобное устройство и провели его огневые испытания. Однако дальше этого дело не пошло, и проект был закрыт.

Пульсирующие воздушно-реактивные двигатели

ПуВРД – это один из первых типов реактивных моторов, использование которых началось еще во время Второй мировой войны. Гитлеровцы устанавливали их на крылатые ракеты Фау-1, применявшиеся для обстрелов Британии.

У пульсирующего реактивного двигателя тяга образуется не постоянно, а в виде серии импульсов, следующих с определенной частотой. Он состоит из диффузора, камеры сгорания и цилиндрического сопла. Между камерой сгорания и диффузором установлен специальный клапан. Цикл работы ПуВРД выглядит следующим образом:

  1. Клапан открыт, и воздух свободно поступает в камеру сгорания. Одновременно происходит впрыск топлива;
  2. Топливно-воздушная смесь поджигается – давление резко повышается и закрывает клапан. Рабочее тело истекает из сопла, образуя реактивную тягу;
  3. Давление в камере сгорания падает, клапан в диффузоре под напором входящего воздуха открывается. Цикл начинается сначала.

Пульсирующий характер работы ПуВРД делает его менее эффективным по сравнению с двигателями с постоянным процессом горения. Такие моторы шумны и неэкономичны, зато очень просты и дешево стоят. В настоящее время ПуВРД используются мало: их устанавливают на БПЛА, летающие мишени, также они нашли свое применение в авиамоделировании.

Фау-1 с ПуВРД

Самый известный случай использования ПуВРД – немецкая крылатая ракета Фау-1

Не будет преувеличением сказать, что создание реактивного двигателя подарило человечеству небо. Благодаря этому устройству самолет превратился из орудия войны в массовый вид транспорта, которым ежегодно пользуются сотни миллионов человек. Однако история реактивного двигателя отнюдь не закончена. Техника и технологии не стоят на месте. Возможно, уже в ближайшие годы появятся новые типы реактивных двигателей, которые позволят нам летать с гиперзвуковой скоростью и наконец-то достигнуть других планет.


Посмотрев данный видеоурок, учащиеся узнают, что называется коэффициентом полезного действия тепловой машины. Поговорим о роли тепловых двигателей в жизни человека.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности




Конспект урока "Коэффициент полезного действия тепловых двигателей"

На прошлом уроке мы с вами начали знакомство с тепловыми двигателями. Давайте вспомним, что так называется устройство, которое совершает механическую работу за счёт внутренней энергии топлива.

Простейший тепловой двигатель представляет собой цилиндрический сосуд, в котором находится газ под поршнем. При нагревании газа, его давление и объём увеличиваются, и поршень приходит в движение, поднимая груз на некоторую высоту.

Любой тепловой двигатель состоит из трёх основных элементов: нагревателя, рабочего тела (как правило, газ) и холодильника (чаще всего атмосфера или вода при температуре окружающей среды).

Энергия, выделяемая при сгорании топлива в нагревателе, передаётся рабочему телу путём теплопередачи. При расширении газа часть его внутренней энергии идёт на совершение работы. А некоторое количество теплоты неизбежно передаётся холодильнику. Таким образом, получается, что полное превращение внутренней энергии газа в работу невозможно. Это обусловлено необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Но второй закон термодинамики запрещает это: ведь невозможно создать вечный двигатель второго рода, то есть двигатель, который полностью превращал бы теплоту в механическую работу.

Баланс энергии за цикл можно получить на основе первого закона термодинамики.

Для идеального теплового двигателя изменение внутренней энергии равно нулю, так как рабочее тело вернулось в исходное состояние. Отсюда находим, что полезная работа, совершаемая тепловым двигателем, равна разности между количеством теплоты, полученной от нагревателя, и количеством теплоты, отданной холодильнику:


Отношение полезной работы к количеству теплоты, которое рабочее тело получило от нагревателя, называется коэффициентом полезного действия теплового двигателя (сокращённо, КПД):


Так как часть теплоты, полученной от нагревателя, передаётся холодильнику, то коэффициент полезного действия любого теплового двигателя всегда меньше единицы:


Для получения максимально возможного коэффициента полезного действия необходимо охладить рабочее тело перед сжатием.


Это можно сделать путём адиабатного расширения газа, при котором его температура понизится до температуры холодильника. Далее при изотермическом сжатии рабочее тело передаст холодильнику некоторое количество теплоты. А завершить цикл теплового двигателя эффективнее всего адиабатным сжатием газа до первоначальной температуры. Впервые этот цикл был предложен французским инженером Сади Карно, поэтому его ещё называют циклом Карно. Формулу для определения коэффициента полезного действия цикла Карно вы сейчас видите на экране:


КПД любого реального теплового двигателя не может превышать КПД идеального цикла Карно. Формула Карно даёт теоретический предел для максимального значения коэффициента полезного действия тепловых двигателей. Она показывает, что двигатель тем эффективней, чем больше разность температур нагревателя и холодильника.

А КПД идеального теплового двигателя мог бы быть равен единице только в том случае, если бы было возможно использовать холодильник с температурой, равной абсолютному нулю. Но, как известно, это невозможно даже теоретически, потому что абсолютного нуля температуры достичь нельзя.

Для закрепления нового материала, решим с вами задачу. Задача 1. Каждый из четырёх двигателей реактивного самолёта на 5000 км пути развивает среднюю силу тяги 0,11 МН. Определите объём керосина, израсходованного на этом пути, если коэффициент полезного действия двигателя равен 24 %. Плотность и удельная теплота сгорания керосина соответственно равны 800 кг/м 3 и 43 МДж/кг.


В заключение урока отметим, что изобретение паровой машины, а впоследствии и двигателя внутреннего сгорания французским инженером Этьеном Ленуаром в 1860 г. имело исключительно важное значение.


Сейчас трудно представить нашу жизнь без автомобилей, самолётов, кораблей и других устройств, в которых внутренняя энергия сжигаемого топлива частично преобразуется в механическую работу.

Наибольшее значение имеет использование тепловых двигателей в энергетике и на транспорте. Тепловые двигатели — паровые турбины — устанавливают на тепловых и атомных электростанциях, где энергия пара превращается в механическую энергию роторов генераторов электрического тока.

Двигатели внутреннего сгорания устанавливают на автомобилях, мотоциклах, вертолётах и самолётах, тракторах и тяжёлых автомобилях. Создание реактивного двигателя позволило поднять самолёты на большую высоту, увеличить скорость и дальность их полётов.

Однако интенсивное использование тепловых двигателей в энергетике и на транспорте отрицательно влияет на окружающую среду. При работе тепловые двигатели выбрасывают в атмосферу огромное количество горячего пара или газа, что приводит к тепловому загрязнению атмосферы.


Широкое использование различных видов топлива влечёт за собой увеличение в атмосфере углекислого газа, который, соединяясь в атмосфере с водяными парами, образует угольную кислоту и выпадает в виде кислотных дождей.

Сжигание топлива на тепловых электростанциях ведёт к накоплению в атмосфере угарного газа, являющегося ядом для живых организмов. Например, при сгорании тонны бензина образуется около 60 кг оксида углерода.

Решение проблем, возникающих при сжигании топлива учёные и конструкторы видят:

· в очистке газовых выбросов в атмосферу;

· увеличении коэффициента полезного действия тепловых двигателей, в частности, путём создания условий для наиболее полного сгорания топлива;

· замене тепловых двигателей на более экологически чистые двигатели, например, электрические;


Энергетическая схема тепловой машины

Q1теплота, полученная рабочим телом

Q2 теплота, переданная

рабочим телом холодильнику

А – полезная работа

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель, рабочее тело и холодильник.

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.


Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Qнагр, полученное от нагревателя, количество теплоты |Qхол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя

Коэффициентом полезного действия η тепловой машины называется отношение работы A к количеству теплоты Q1, полученному рабочим телом за цикл от нагревателя:


Коэффициент полезного действия η указывает, какая часть тепловой энергии, полученной рабочим телом от нагревателя, превратилась в полезную работу.

Коэффициент полезного действия тепловой машины всегда меньше единицы (η

Читайте также: