Схема задней стенки холодильника

Обновлено: 12.05.2024

Всё холодильное оборудование, используемое в бытовых помещениях, сконструировано по единым принципам. Имея нужную схему холодильника достаточно просто разобраться в наиболее часто встречающихся неисправностях холодильников.

Схемы холодильников Атлант

Двухкамерные холодильники МХМ-268, МХМ-2706, МХМ-2712

Данные холодильники являются компрессионными, имеют две камеры, предназначены для охлаждения, хранения свежих продуктов в холодильной камере, а также для замораживания свежих продуктов, хранения замороженных и приготовления льда в морозильной камере.

При эксплуатации холодильника необходимо соблюдать определенные условия:

Температурный режим окружающей среды от плюс 16 до плюс 32 С и относительной влажности не более 75%;

напряжение в электрической сети переменного тока должно быть в диапазоне от 198 до 242 В и частоте (50±1) Гц.

По типу защиты от поражения электрическим током данные марки холодильников относятся к классу I и соответственно должны подключаться к электрической сети через двухполюсную розетку с заземляющим контактом.

Не стоит самостоятельно устанавливать розетки с заземляющим контактом, если вы не обладаете соответствующими знаниями и навыками, обратитесь с этой целью к квалифицированному специалисту.

ВНИМАНИЕ! После транспортировки при температуре окружающей среды ниже плюс 10 С холодильник перед включением в электрическую сеть следует выдержать 6 часов при комнатной температуре.

Знание механической части и электрической схемы холодильника Атлант и его аналогов могут позволить самостоятельно найти причину поломки и восстановить рабочие функции холодильного оборудования.

В устройство холодильника Атлант входят

следующие компоненты: корпус с двойными стеками со слоем изолирующего материала; фронтальные дверцы с возможностью навески на левой или правой стенке корпуса; поршневой компрессор с электрическим двигателем; радиатор испарителя, расположенный внутри рабочих камер оборудования; конденсационный блок, смонтированный на внешней части корпуса (на задней стенке); терморегулятор с температурными датчиками для поддержки заданных параметров; электронный блок управления и реле, обеспечивающие работу электрических компонентов.

дисплей Атланта

В единый блок медными и стальными трубками соединены между собой радиаторы и компрессор. В этом случае используется припой для обеспечения герметичности. В конструкции предусмотрены дополнительные элементы, отделяющие пары воды или масла, а также корректирующие давление хладагента. В бытовом однокомпрессорном холодильнике в качестве хладагента используется изобутан или фреон. Газ находится в охлажденном контуре под давлением. На задней стенке устройства расположена трубка для его пополнения при необходимости.

Кроме того, на некоторых холодильных установках применяется дополнительный жидкокристаллический дисплей и блок контрольных индикаторов.

В ряде моделей холодильников встречаются агрегаты со специальным отсеком для охлаждения воды и с теплообменниками стандарта No Frost.

В устройство компрессора холодильника входит электрический двигатель переменного тока с вертикально установленным ротором. На переднем носке мотора смонтирован кривошипно-шатунный механизм, связанный с поршнем, сжимающим хладагент. Все агрегаты установлены на пружинных опорах в металлическом корпусе, который состоит из 2 половин. Части кожуха сварены между собой дуговой сваркой. Данные части не подлежат замене компонентов в процессе эксплуатации.

Работой компрессора управляет механический терморегулятор ТАМ-133-1М. С сетевой вилки через контакты термореле напряжение сети принимает схема компрессора холодильника, состоящая из пуско-защитного реле, одетого своими контактами на мотор-компрессор. Пуско-защитный блок включает также тепловое реле, отключающее пусковую обмотку двигателя после его запуска. После охлаждения до заданной температуры контакты терморегулятора размыкаются и компрессор холодильника останавливается.

Особенности в работе холодильника Атлант

При эксплуатации холодильников Атлант

возникают некоторые моменты, которые могут восприниматься как неисправность механизмов, однако это не так. Работа холодильника сопровождается с рядом шумов, которые носят функциональный характер и не связаны с каким-либо дефектом.

Для поддержания температуры на необходимом уровне в холодильнике периодически включается и выключается компрессор. Возникающие при этом шумы – нормальное явление. Как только в холодильнике устанавливается рабочая температура эти шумы автоматически становятся тише.

При включении (выключении) компрессора срабатывает датчик-реле температуры, при этом может быть слышен щелчок.

Циркуляция хладагента по трубкам холодильной системы сопровождается звуками журчания.

два компрессора

Кроме того, в процессе эксплуатации холодильника могут возникнуть источники дополнительных шумов. Усиление шума может быть вызвано неправильной установкой комплектующих (полок, барьеров-полок и др.) или соприкасанием емкостей с продуктами, размещенными в холодильнике. В таких ситуациях уровень шума можно уменьшить, переустановив комплектующие или устранив касание емкостей друг с другом.

Источниками шума могут стать также элементы холодильника (конденсатор, трубки, провода, элементы системы слива талой воды), если после транспортирования (перемещения или неправильной установки после уборки) они стали соприкасаться друг с другом. Устранить дополнительный уровень шума при этом можно отрегулировав положение элементов холодильника или правильно установив их.

Предотвращает образование конденсата тот факт, что…

шкаф холодильника нагревается по периметру двери морозильной камеры. Температура нагрева зависит от температуры окружающей среды, объема хранящихся в морозильной камере продуктов, а также от загрязненности конденсатора. Повышение температуры нагрева в процессе работы холодильника не является неисправностью

ВНИМАНИЕ! Не реже двух раз в год необходимо чистить пылесосом заднюю стенку холодильника и конденсатор, предварительно отодвинув холодильник от стены.

В холодильнике используется теплоизоляционный материал пенополиуретан, который дает усадку. Незначительная неровность на боковых поверхностях холодильника, вызванная усадкой пенополиуретана, не влияет на работу холодильника, не ухудшает теплоизоляцию и не является дефектом.

ВАЖНО! Если требуется замена деталей или агрегатов, то запчасти для холодильников Атлант должны быть оригинальными. Такую работу лучше доверить высококвалифицированному специалисту.

  • Холодильник подключен к сети, но не работает, лампа освещения в холодильной камере не горит. Может быть две причины: нет напряжения или нет контакта между розеткой и вилкой прибора. Сначала следует проверить, есть ли напряжение в сети.
  • Если холодильник работает, а лампа для освещения внутри не загорается, то, скорее всего, она перегорела. Потребуется взять исправную лампу и произвести замену перегоревшей.
  • Холодильник работает, но при этом сильно шумит (уровень шума превышает шум функционального характера). Эта проблема возникает, если прибор установлен неправильно.
  • В камерах температура охлаждения не является достаточно низкой, значит, дверца закрыта неплотно. Чтобы наладить температурный режим, закройте плотно дверцу.
  • Если температура в холодильнике увеличивается или компрессор не запускается, то его необходимо заменить.
  • Охлаждение в холодильнике не является достаточным. Нужно заменить пускозащитное реле или датчик-реле температуры.
  • Если компрессор работает беспрерывно, то это может происходить, потому что в холодильнике недостаточное количество хладагента. Требуется сделать дозаправку и провести испытания.

ВАЖНО! Приступать к самостоятельному ремонту холодильного оборудования можно только в случае, если вы знаете устройство и схемы холодильника Атлант в достаточной степени. При этом желательно, чтобы вы обладали и практическим опытом. В противном случае, даже если не работает холодильник Атлант, вам не стоит его разбирать самостоятельно, чтобы найти реле. Это может привести к необратимым последствиям.

В этом случае обратитесь к квалифицированному специалисту.



Уникальным свойством хладагента является его способность к переходу из газообразного в жидкое состояние и обратно. Внутри холодильника это происходит в конденсаторе и испарителе. При этом энергия, затраченная на переход между агрегатными состояниями, охлаждает воздух в холодильнике, что и необходимо для сохранения продуктов.

Устройство холодильника

Корпус холодильника может содержать одну, две или больше камер для хранения продуктов. Дверцы холодильника с резиновым уплотнителем изолируют его внутреннее пространство. Поршень мотора–компрессора нагнетает хладагент фреон, разогревая его. Элементы контроля отвечают за периодичность работы компрессора. Трубки, по которым циркулирует хладагент, спрятаны внутри стенок корпуса.

Как работает холодильник

Если изоляция от внешней среды на совести материалов — от резиновых уплотнителей дверцы до алюминия трубок, то разницу давлений обеспечивает капиллярная трубка.

Испаритель — низкое давление, хладагент попадает туда в жидком агрегатном состоянии, вследствие чего закипает. В результате поглощения тепла получаем такой необходимый для хранения продуктов холод.

Конденсатор — высокое давление, здесь хладагент отдает тепло, возвращаясь в жидкое состояние. Тепло выходит во внешнюю среду. Трубка сзади холодильника, теплая на ощупь — это и есть конденсатор.

Схема холодильника

Каждая конкретная модель имеет свои особенности, в задачи производителей входит улучшение принципиальной схемы в деталях, добиваясь повышения энергоэффективности и эргономичности.

Работа компрессора холодильника

Наиболее часто встречающийся вариант компрессора — поршневой — отличается в зависимости от конкретной модификации. В наиболее общем виде коленчатый вал вращается внутри герметичного кожуха. Движения поршня нагнетают хладагент в конденсатор, нося при этом возвратно-поступательный характер. Система клапанов регулирует попадание газа.


Однако в бытовых холодильниках строение самого поршня также может быть с различным механизмом. При наличии двух компрессоров в рефрижераторе используют кривошипно-кулисный, для большого объёма и значительных нагрузок — кривошипно-шатунный. Замена коленчатого вала в моторе подачей переменного тока на катушку повышает экономичность, делая ненужной механику.

Схема работы компрессора

Электроток, проходя через замкнутые контакты терморегулятора, реле тепловой защиты и пусковое, а также рабочую обмотку компрессора, запускает работу последнего.


Пусковое реле подключает к цепи пусковую обмотку мотора. Контакты замыкаются, двигатель начинает вращение. Биметаллическая пластина реле тепловой защиты меняет форму при опасном нагреве, который может случиться при сильном повышении электротока. При этом контакты размыкаются, отключая двигатель. Также двигатель останавливается из-за размыкания контактов терморегулятора – компрессор отключается, когда температура достигает заданного значения.

Устройство однокамерного холодильника

Испаритель размещен в верхней части рефрижератора, под ним для плавного снижения температуры – поддон, закрытие/открытие отверстий которого регулирует подачу охлажденного воздуха в камеру. Термореле запускает цикл включения/выключения компрессора. Внутри трубопровода современных холодильников – капиллярная трубка, предохраняющая от конденсата.

Устройство двухкамерного холодильника

В двухкамерном холодильнике теплоизоляция перегородки разделяет между собой испарители, отдельные для каждой камеры. Хладагент вначале по капиллярной трубке закачивается на испаритель в морозильной камере, и только после падения его температуры ниже нуля по шкале Цельсия, поступает в испаритель второй — холодильной — камеры. После обмерзания второго испарителя термореле прекращает работу компрессора.

При нагреве испарителя до определенного уровня, автоматически включается компрессор.

Схема морозильной камеры

Как часть бытового холодильника, морозильная камера традиционно должна находится наверху, так как охлажденный воздух опускается вниз по законам физики. Но в современных холодильниках она может быть и сбоку, и внизу. Ничего магического тут нет – это стало возможным благодаря исключительно технологическим новинкам. В частности, наличию двух компрессоров или двух контуров. Подобные инженерные решения повышают стоимость продукции, но в то же время возрастает уровень бытового комфорта, что объясняет их растущую популярность.


Принципиально устройство отдельной морозильной камеры не отличается от такого у включенной в состав холодильника. Система вентиляторов при сухой заморозке – основное отличие от требующего капельного размораживания типа.

Завариваем чай правильно: ТОП-5 электрочайников с терморегулятором
Компактная альтернатива термопоту с возможностью нагрева воды до нужной температуры.

Пока техника исправно функционирует, пользователя не интересует, как она устроена. Знания о том, как работает холодильник, понадобятся, когда возникла поломка: помогут избежать серьезной неисправности или быстро определить место. Правильная эксплуатация также во многом зависит от осведомленности пользователя. В статье рассмотрим устройство бытового холодильника и его работу.

Как устроен компрессорный холодильник

Схема работы компрессорного холодильника популярных марок и размеров по единому принципу

Основные составляющие части:

  • Компрессор (мотор). Бывает инверторным и линейным. Благодаря запуску мотора фреон передвигается по трубкам системы, обеспечивая охлаждение в камерах.
  • Конденсатор — это трубки на задней стенке корпуса (в последних моделях может размещаться сбоку). Тепло, которое вырабатывает компрессор во время работы, конденсатор отдает окружающей среде. Так холодильник не перегревается.

Вот почему производители запрещают устанавливать технику возле батарей, радиаторов и печей. Тогда перегрева не избежать, и мотор быстро выйдет из строя .

  • Испаритель. Здесь фреон закипает и переходит в газообразное состояние. При этом забирается большое количество тепла, трубки в камере охлаждаются вместе с воздухом в отделении.
  • Вентиль для терморегуляции. Поддерживает заданное давление для движения хладагента.
  • Хладагент — это газ-фреон или изобутан. Он циркулирует по системе, способствуя охлаждению в камерах.

Схема стандартного холодильника и как циркулирует хладагент по трубам радиатора на задней стенке модели

Важно правильно понимать, как работает техника: она не вырабатывает холод. Воздух охлаждается благодаря отбору тепла и его отдаче окружающему пространству. Фреон проходит в испаритель, поглощает тепло и переходит в парообразное состояние. Двигатель приводит в действие поршень мотора. Последний сжимает фреон и создает давление для его перегонки по системе. Попадая в конденсатор, хладагент остывает (тепло выходит наружу), превращаясь в жидкость.

Переходя в фильтр-осушитель, хладагент избавляется от влаги и проходит по трубкам капилляра. После чего снова попадает в испаритель. Мотор перегоняет фреон и повторяет цикл, пока в отделении не установится оптимальная температура. Как только это случится, плата управления посылает сигнал пускозащитному реле, которое отключает двигатель.

Однокамерный и двухкамерный холодильник

Несмотря на одинаковое строение, различия в принципе работы все-таки есть. Старые двухкамерные модели оснащены одним испарителем для обеих камер. Поэтому, если при разморозке механически убирать наледь и задеть испаритель, из строя выйдет весь холодильник.

Новый двухкамерный шкаф имеет два отделения, каждый из которых оснащен испарителем. Обе камеры изолированы друг от друга. Обычно в таких случаях морозилка находится снизу, а холодильный отсек — сверху.

Пример распространенного двухкамерного холодильника с нижней морозильной камерой и большими ручками

Поскольку в холодильнике есть зоны с нулевой температурой (читайте, что такое зона свежести в холодильнике), фреон охлаждается в морозилке до определенного уровня, а затем перемещается в верхнее отделение. Как только показатели достигают нормы, срабатывает терморегулятор, и пусковое реле отключает мотор.

Наиболее востребованы приборы с одим мотором, хотя с двумя компрессорами также набирают популярность. Последние функционируют так же, просто за каждую камеру отвечает отдельный компрессор.

Большие двухдверные холодильники работают на двух компрессорных моторах по такой вот схеме на фото

Как работает подача хладагента в трубы холодильника с применением функции закрытого клапана при режиме

Более сложная конструкция предусматривает размещение специальных датчиков, которые измеряют температуру снаружи и регулируют ее внутри камеры.

Как долго работает компрессор

Точные показания не указаны в инструкции. Главное, чтобы мощности мотора хватало на нормальную заморозку продукции. Существует общий коэффициент работы: если прибор функционирует 15 минут и 25 минут отдыхает, тогда 15/(15+25) = 0,37.

Если подсчитанные показатели оказались менее 0,2, значит нужно отрегулировать показания термореле. Более 0,6 указывает на нарушение герметичности камеры.

Компрессор непрерывно работает в течение 15 минут, после чего ему необходим отдых по времени почти в два раза

Абсорбционный холодильник

В данной конструкции рабочая жидкость (аммиак) испаряется. Хладагент циркулирует по системе благодаря растворению аммиака в воде. Затем жидкость переходит в десорбер, а потом в дефлегматор, где снова разделяется на воду и аммиак.

Холодильники данного типа редко используются в быту, поскольку в основе ядовитые компоненты.

Абсорбционный холодильник редко используется в быту из-за наличия в составе токсичных веществ

Техника с системой Ноу Фрост сегодня на пике популярности. Потому что технология позволяет размораживать холодильник раз в год, только чтобы помыть. Особенности функционирования обеспечивают вывод влаги из системы, поэтому в камере не образуется лед и снег.

В морозильном отделении располагается испаритель. Холод, который он вырабатывает, распространяется по холодильному отделению с помощью вентилятора. В камере на уровне полок есть отверстия, куда выходит холодный поток и равномерно распределяется по отсеку.

После цикла работы запускается оттайка. Таймер запускает ТЭН испарителя. Наледь тает, и влага выводится наружу, где испаряется.

В холодильниках с капельной системой разморозки важно следить за тем, чтобы фильтр был без засоров

Суперзаморозка

Некоторые модели современных холодильников имеют функцию супер заморозки, создающую нагрузку на работу мотора

Рекомендуется включать режим на срок до 72 часов.

Электронное управление автоматически отключает суперзаморозку, согласно сигналам термоэлектрических датчиков.

Электрическая схема

Чтобы самостоятельно отыскать причину неполадки, понадобится знание электрической схемы.

Стандартная электрическая схема работы бытового холодильника для диагностики и выявления неисправности

Ток, подающийся на схему, проходит такой путь:

  • идет через контакты термореле (1);
  • кнопки оттайки (2);
  • теплового реле (3);
  • пускозащитного реле (5);
  • подается на рабочую обмотку двигателя мотора (4.1).

Рабочая схема двигателя компрессорного мотора бытовых холодильников

Нерабочая обмотка двигателя пропускает напряжение больше заданного значения. При этом срабатывает пусковое реле, замыкает контакты и запускает обмотку. После достижения нужной температуры, контакты термореле размыкаются, и двигатель останавливает работу мотора.

Теперь вы понимаете устройство холодильника и как он должен работать. Это поможет правильно эксплуатировать прибор и продлить срок его использования.

Как починить холодильник: диагностика и что делать

Устройство холодильной установки

Первые электрические холодильники появились в 1913 году. Принцип их действия основан на температурных процессах, происходящих в хладагенте (фреоне) при переходе из жидкого состояния в газообразное и наоборот.

Простейшая схема холодильной установки выглядит следующим образом.


По сути, перед нами схема, используемая в холодильниках и сегодня. В ней есть всего несколько основных узлов:

  • компрессор;
  • конденсатор;
  • дроссель (капилляр);
  • испаритель.

Работает такая холодильная установка достаточно просто. Компрессор, создавая давление в замкнутой системе, заставляет газообразный хладагент перейти в жидкое состояние. При этом в большом количестве образуется тепло, отводимое через конденсатор в окружающую среду. Жидкий фреон, пройдя через дроссель, попадает в зону низкого давления системы, в которой происходит его закипание и обратный переход в газообразное состояние. Кипение фреона происходит при отрицательных температурах в испарителе, поэтому образовавшийся в нем холод сильно остужает его стенки, а достаточно герметичная камера аппарата не позволяет холодному воздуху попадать в атмосферу. Поскольку контур, в котором циркулирует хладагент, является замкнутым, то цикл перехода фреона из одного состояния в другое повторяется многократно.

Помимо названных выше основных элементов, конструкция холодильника включает несколько дополнительных узлов:

  • терморегулятор. Служит для поддержания заданной температуры внутри камеры;
  • фильтр-осушитель. Он отвечает за чистоту хладагента, циркулирующего в контуре.


Более подробно ознакомиться с устройством и принципом действия холодильника можно в статье Клуба DNS.

В последние годы в сегменте бытовых холодильных установок стали очень популярными агрегаты, работающие по принципу No Frost (в буквальном переводе — без инея). Их принципиальное отличие — охлаждение продуктов происходит не от контакта с холодными поверхностями испарителя, а благодаря постоянно циркулирующему в камере охлажденному воздуху.


Основной принцип получения холода внутри камеры остается неизменным. А вот за распространение холодного воздуха внутри агрегата отвечает мощный вентилятор, обеспечивающий его постоянную циркуляцию внутри устройства по специальным воздуховодам.

Диагностика узлов холодильника

Несмотря на всю громоздкость конструкции, у холодильника не так уж много узлов, способных выйти из строя. В большинстве случаев поиск неисправности достаточно прост и не займет много времени.

Проведение диагностики узлов агрегата подразумевает наличие минимальных познаний в области электротехники. Если нет уверенности в собственных силах, работы по поиску и устранению неисправности лучше доверить квалифицированному специалисту!

Важно! Все работы необходимо проводить при отключенном от электрической сети устройстве!

Диагностика компрессора

Компрессор — сердце любого холодильника, от его эффективной работы зависит скорость набора нужной температуры в камере.

Выход из строя компрессора — самая затратная часть ремонта холодильника.

Перед проведением замеров необходимо удостовериться, что агрегат отключен от электрической сети!

Чтобы получить доступ к клеммам компрессора, с его корпуса необходимо демонтировать пуско-защитное реле.


Правая клемма — вывод рабочей обмотки, левая — пусковой обмотки. Верхний вывод является общей точкой двух обмоток мотора холодильника.

Для диагностики необходимо отдельно измерить сопротивление обеих обмоток, а также их общее сопротивление. Для проверки рабочей обмотки замер производится правой и верхней клеммами, пусковой — между левым и верхним выводами.

Как правило, у компрессоров небольшой мощности сопротивление рабочей обмотки находится в пределах 15 Ом, пусковой — около 20 Ом.

Третий замер производится для проверки общей целостности обмоток, для чего измеряют сопротивление между правым и левым выводами клеммной коробки компрессора. В случае нормального состояния обмоток, прибор должен показать суммарное сопротивление двух обмоток (сумму результатов измерений, полученных чуть ранее). Как правило, суммарный результат должен составить 30-35 Ом.

Дополнительно следует удостовериться в отсутствии замыкания обмоток на корпус компрессора. При исправной электрической части все три замера должны показать отсутствие цепи для протекания электрического тока.

Номинальные значения сопротивлений обмоток для конкретной модели компрессора лучше всего найти в Интернете.

Проверка механической части агрегата потребует разгерметизации контура охлаждения. Ее лучше доверить специалисту, имеющему в своем арсенале необходимое оборудование. Для выполнения таких работ потребуются:

  • труборез;
  • инструмент для вальцовки труб;
  • манометр;
  • соединительные шланги;
  • электронные весы;
  • вакуумный насос;
  • газовая горелка;
  • набор муфт для соединения.

Сама проверка сводится к подключению к диагностируемому компрессору манометра и измерению создаваемого им давления в магистрали. Если после включения холодильника манометр показывает 4 бар и более — компрессор исправен. В противном случае он подлежит замене.

Диагностика капиллярной системы

В случае, когда компрессор работает исправно, а холодильник не производит холод должным образом, вероятной причиной неисправности может выступать засор капиллярной трубки. Данная проблема препятствует нормальной циркуляции хладагента и не позволяет агрегату нормально работать.

Косвенно проблему можно диагностировать по температуре нагнетательного штуцера компрессора. Если он быстро нагревается, но спустя пару минут остывает — с большой долей вероятности можно говорить об имеющемся засоре в капиллярной системе холодильника.

Можно определить засор путем ощупывания поверхности конденсатора. Если он имеет неравномерный нагрев по всей площади или часть его поверхности и вовсе остается холодной, то это также свидетельствует об имеющемся засоре.

Более точно поставить диагноз можно после разгерметизации системы. Достаточно подключить манометр к заправочному патрубку. Если при работающем компрессоре прибор показывает отрицательные значения (образование вакуума), а после выключения агрегата давление в системе остается неизменным или нарастает очень медленно — засор капиллярной системы очевиден.


Диагностика терморегулятора

Терморегулятор отвечает за поддержание в холодильной камере заданной температуры. По своей сути это обычный выключатель, который включает или выключает компрессор при достижении нужных температур внутри устройства.


Если холодильник не включается вовсе или, наоборот, работает без остановки, вероятная причина поломки — выход из строя терморегулятора.

Проверить его просто. В случае, когда компрессор не запускается, нужно замкнуть между собой три провода, подключаемые к узлу, после чего включить холодильник в сеть. В старых моделях холодильников для подключения терморегулятора использовалось два провода. Замыкать их нужно между собой. Если компрессор запустится — виновник найден и его предстоит заменить.

Когда выключения компрессора не происходит, можно предположить, что регулятор вышел из строя и остался в замкнутом положении. Он также подлежит замене.

Замена не представляет особой сложности, главное, при установке нового узла не допускать переломов и замятия сильфонной трубки с газом, отвечающей за срабатывание контактной части узла.

Диагностика узлов холодильника No Frost

При поиске неисправностей системы No Frost методология проверки компрессора и капиллярной системы остаются теми же. Но поскольку в системе появляются новые элементы, остановимся на их проверке более детально.

Проверка вентилятора

Чтобы убедиться в работе вентилятора визуально, придется снять защитный кожух морозильной камеры, представляющий собой ее заднюю стенку. При осмотре вентилятора нелишним будет уделить внимание его крыльчатке. Лопасти не должны иметь сколов и трещин.


В случае неисправности узла он заменяется новым.

Диагностика системы оттаивания


Компонентами системы оттаивания являются:

  • таймер оттаивания;
  • два термореле (может быть одно совмещенное) для отслеживания верхнего и нижнего порогов температуры;
  • нагревательный элемент.

Работает система следующим образом. По истечении времени, заданного таймером оттаивания (в зависимости от производителя от 4 до 24 часов), компрессор выключается, и в течение 15-20 минут испаритель нагревается ТЭНом. В результате вся образовавшаяся за цикл работы наледь оттаивает и удаляется в дренажную систему холодильника.


Как это ни парадоксально звучит, но перед диагностикой холодильник No Frost желательно разморозить, дав ему постоять выключенным в течение 10-12 часов. Это может решить проблему оттаивания испарителя без дальнейшего вмешательства.

Работоспособность системы проверяется следующим образом:

  1. Демонтируются защитный кожух морозильной камеры и пластиковая панель с вентилятором, установленная за ним.
  2. В зависимости от типа таймера (электронный или механический), на его корпусе либо нажимается кнопка принудительного включения режима оттаивания, либо проворачивается рукоятка (по ходу часовой стрелки) до характерного щелчка.

При этом работа компрессора должна прекратиться, а ТЭНы оттаивания должны начать нагреваться.

Если нагрев ТЭНов не происходит, необходимо убедиться в целостности нагревательных элементов (их номинальное сопротивление составляет 200-300 Ом) и нормальной работе термореле. Одно из них, отвечающее за включение цепи при достижении порога низкой температуры, является нормально разомкнутым. Оно коммутирует цепь при достижении температуры, равной - 10 ° С. Второе реле — нормально замкнутое, его назначение — защита испарителя от перегрева. Реле разрывает цепь питания ТЭНа при достижении температуры в + 10 ° С. Неисправные компоненты системы заменяются новыми.

Более подробно о диагностике и ремонте системы оттаивания рассказано в следующем видео:

Владельца не слишком волнует устройство бытового оборудования, пока техника нормально работает. Но при возникновении проблем знание принципов функционирования основных узлов может помочь устранить неисправность. Разбираемся в особенностях работы холодильного оборудования с учетом типа устройства и принципа действия отдельных элементов.


Общее описание холодильного оборудования и процесса его работы

0

Холодильник состоит из таких основных частей:

  • компрессора – мотора, обеспечивающего циркуляцию хладагента в системе и охлаждение камер; используются узлы инверторного и линейного типа
  • конденсатора – трубки, расположенной вдоль задней стенки холодильного шкафа, и охлаждающего хладагента, передающего тепло в окружающую среду
  • испарителя – места кипения фреона, переходящего в газообразное состояние и интенсивно отбирающего тепло при понижении температуры
  • терморегуляционного вентиля – удерживающего давление в системе на заданном уровне
  • хладагента – фреона или изобутана, циркулирующего в системе трубок, охлаждающего воздух внутри прибора.

Принцип работы холодильника основан на отборе тепла в процессе кипения фреона и отдаче энергии окружающей среде.

1

Компрессор нагнетает давление, вызывая принудительную циркуляцию хладагента. Это вещество испаряется в испарителе, поглощая тепло из воздуха камеры. В конденсаторе фреон охлаждается, возвращаясь в жидкую фазу, и процесс протекает далее в том же порядке.

Понимание принципа работы может помочь определить неисправность, идентифицировав вышедший из строя узел, чтобы устранить проблему.

Компрессор

Компрессор — это мотор, нагнетающий хладагент для циркуляции в системе.

В бытовых холодильниках предусмотрено применение следующих видов компрессоров:

  • динамических, где хладагент нагнетается вентилятором; в зависимости от типа нагнетающего элемента может быть осевым или центробежным
  • поршневых — с созданием давления посредством поршня с электроприводом
  • роторных — применяются в инверсионных холодильниках.

Далее детальнее расскажем о конструкции каждого из видов компрессоров.

В стандартном исполнении компрессор представляет собой электродвигатель, помещенный в герметичный корпус. При включении, по мере вращения коленчатого вала, поршень закачивает хладагент в конденсатор из испарителя.

Работу системы обеспечивают два клапана: впускной и нагнетательный. Впускной клапан открывается при движении поршня вниз. В это время в цилиндре создается разряжение (в данном случае давление ниже атмосферного). Воздух, поступающий через клапан, очищается с помощью фильтров. При движении поршня вверх оба клапаны закрыты. При сжатии воздуха возрастает давление в цилиндре, и открывается нагнетательный клапан, через который воздух поступает в ресивер.

Такие компрессоры могут быть:

  • кривошипно-шатунными — для перекачивания значительных объемов хладагентов, устанавливаются на больших холодильных шкафах
  • кривошипно-кулисными — на комбинированном оборудовании, при раздельных компрессорах для морозильной и холодильной камер.

Компрессоры поршневого типа невозможно восстановить в домашних условиях, поскольку их разборка ведет к разгерметизации устройства. Теоретически ремонт возможен с применением специализированного оборудования. Но обычно устранение неисправности, связанной с выходом из строя компрессора, требует замены агрегата.

В этом компрессоре газ нагнетают ведущий и ведомый роторы, вращающиеся во встречных направлениях и соприкасающиеся по всей длине. Рабочая среда закачивается компрессором в конденсатор за счет уменьшения объемов воздушных карманов через отверстие с малым диаметром.

3

Такие устройства отличаются низким уровнем шума и вибрации, стабильностью показателей давления и температуры за счет того, что для нормальной работы аппарата не требуется большой скорости вращения роторов.

Хладагент

5

Холодильным агентом называют рабочее вещество, кипение которого с изотермическим расширением отбирает тепло из камер холодильника и передает тепловую энергию в окружающую среду. В результате снижается температура внутри.

В роли хладагента в бытовых моделях чаще применяют фреон — метано-этановую смесь. Циркулируя внутри охладительного контура, состав пребывает в двух агрегатных состояниях: газообразном и жидком. Кипение последней приводит к интенсивному снижению температуры.

Это вещество лишено запаха и абсолютно прозрачно, поэтому утечку можно выявить только по косвенным признакам: отложениям конденсата на стенках холодильных камер, недостаточной заморозке.

5

В бытовых холодильных приборах применяют такие хладагенты:

  • R600a (изобутан) — природный компонент, безвредный для экологии, но взрывоопасный при концентрации, превышающей 31 грамм на куб воздуха; поэтому оборудование рассчитано на содержание, безопасное для использования
  • R134a (тетрафторэтан) — безопасное вещество, не содержащее хлора, которое не воспламеняется ни при какой температуре, не вызывает разрушения озонового слоя
  • R22 (дифторхлорметан) — используется в устаревших моделях холодильных приборов; вредит экологии и при нагреве распадается на токсичные компоненты.

Полностью исключен из употребления R12 (дифтордихлорметан) — газ со сладковатым привкусом, взрывающийся при нагреве более 330 градусов и вызывающий удушье при вытеснении трети общего объема воздушной среды.

Точный состав хладагента указан изготовителем в технической документации на бытовой прибор.

Конденсатор

Конденсатором называют часть контура, по которому циркулирует хладагент, где рабочее тело возвращается в жидкое состояние, отдавая тепло через стенки трубки в окружающую среду.

6

Этот элемент преимущественно расположен сзади холодильника. Но в отдельных моделях предусмотрено боковое размещение.

Трубка теплообменника выполнена в форме змеевика. Для интенсивного охлаждения конденсатор снабжен дополнительными ребрами, соединяющими параллельно расположенные участки, для увеличения площади теплоотдачи.

Испаритель

Испарителем называют узел холодильного агрегата, в котором хладагент переходит из жидкого состояния в газообразное, интенсивно поглощая тепло из воздуха камеры в процессе испарения.

7

Эту деталь холодильника изготавливают из стального или алюминиевого сплава. От исправности данного элемента зависит работа всего устройства.

Выпускают холодильное оборудование бытового назначения с такими испарителями:

  • открытым — характерен для небольших или устаревших моделей, где морозильная камера не отделена от общего объема шкафа
  • закрытого самооттаивающегося — крепится к задней стенке морозильника, заливается пенистым изоляционным материалом, отделен от камеры (это обеспечивает защиту от повреждений). При размораживании элемента вода стекает в поддон внизу холодильника
  • отделенного — характерен для мощных моделей с охлаждением вентилятором.

По особенностям конструктивного устройства различают следующие типы испарителей:

  • кожухотрубные — имеют вид стального цилиндра с большим количеством трубок внутри
  • пластинчатые — используются чаще других; трубка с хладагентом, выполненная в виде спирали, проходит в плоскости стальной или алюминиевой пластины, через которую отбирается тепло из воздуха охлаждаемой камеры
  • пленочные — представляют собой плоские емкости с теплообменной поверхностью.

Капиллярная трубка

Капиллярная трубка выполнена из меди. Этот элемент включен в общий контур циркуляции хладагента и расположен между испарителем и конденсатором для регулирования потока вещества.

8

Трубка разграничивает зоны высокого и низкого давления, обеспечивая необходимые показатели в испарителе.

Применение данного типа дроссельного элемента позволяет получить следующие преимущества:

  • конструктивную простоту без необходимости устройства сложных узлов
  • отсутствие движущихся частей, что повышает надежность в работе.

При запуске компрессора применение указанного устройства снижает степень противодействия усилию поршня, благодаря чему могут использоваться электродвигатели с экономичными характеристиками.

Фильтр-осушитель

Одно из необходимых условий нормальной работы холодильника — поддержание низкого уровня влажности. Это достигается посредством фильтра-осушителя — элемента в виде продолговатого бочонка, расположенного между капиллярной трубкой и конденсатором.

фильтр

Внутри содержится адсорбент, поглощающий влагу из хладагента и дополнительно удерживающий твердые частицы.

фильтр8

Замена этого элемента требуется при проведении любого ремонта холодильного агрегата.

Засорение фильтра может проявляться такими негативными последствиями:

  • повышением температуры в холодильном и морозильном отделениях
  • непрерывной работе холодильника, отсутствии отключений
  • сильным нагревом начального колена конденсатора, при комнатной температуре — и последующих участков
  • механическими повреждениями контура на выходе из осушителя.

Чтобы обеспечить безаварийную работу агрегата, фильтр-осушитель подлежит периодической ревизии и замене согласно установленному производителем регламенту.

Терморегулирующий вентиль

Терморегулирующим вентилем называют устройство, регулирующее выход фреона из испарителя в капиллярную трубку, для настройки общего уровня давления в системе. Капиллярная трубка, в силу простоты устройства, не может изменять данный показатель, поэтому в этих целях используется такой вентиль.

вентиль

Этот элемент выполнен в виде клапанного узла узкого внутреннего сечения. Он имеет гибкую металлическую мембрану, назначение которой заключается в реагировании на изменение давления и приведение в движение закрепленного на ней штока. Подпружиненный шток движется в продольном направлении вдоль конусного канала, измеряя проходное сечение вентиля и регулируя прохождение фреона.

Таким способом изменяется диаметр прохода и регулируется работа всей системы.

Терморегулятор

Терморегулятор — небольшой элемент, регулирующий интенсивность работы холодильника. Он корректирует в большую или меньшую сторону показатели температуры в камерах.

регулятор

Этот прибор может быть механического или электронного действия, в зависимости от вида датчика, который используется в конструкции агрегата.

Терморегулятор состоит из сильфонной трубки, наполненной фреоном и соединенной с испарителем. При повышении температуры до верхнего установленного предела датчик подает команду, срабатывает реле, включается компрессор. После того как камеры достаточно охладятся, силовой агрегат отключается.

Устройство терморегулятора предусматривает возможность регулировки уровня охлаждения в пределах возможного диапазона.

Процесс работы двухкамерного холодильника

Кроме агрегатов с простой схемой (при одном общем отделении), разработаны и активно функционируют установки на две камеры. Такое оборудование предполагает конструкцию с одним или двумя компрессорами.

Особенность двухкамерных холодильников с одним силовым агрегатом в том, что они оборудованы двумя испарителями, последовательно расположенными в системе и работающими на различные камеры. В одном объеме создается умеренное охлаждение, а во втором — отрицательная температура.

Схема работы такого аппарата:

схема

Фреон последовательно переходит из испарителя морозильного отделения в контур холодильного. Поскольку хладагент частично нагрелся в морозилке, температура воздуха в холодильной камере не падает ниже нулевой отметки.

В аппаратах с двумя компрессорами предусмотрены две отдельные системы, работающие на разные камеры, с различной интенсивностью охлаждения. Здесь имеются раздельные контуры, не соединенные друг с другом.

Капельная система Direct Cool

direct cool

На агрегатах, где используется капельная система разморозки, излишний лед удаляется из испарителя холодильника автоматически за счет разницы в температуре стенок.

Система работает следующим образом:

  • плоскость испарителя располагается по задней стенке морозильного отделения, что вызывает отложение конденсата на ее поверхности за счет низкой температуры
  • после отключения компрессора образовавшаяся наледь тает естественным путем по мере повышения температуры в камере
  • вода стекает в поддон, постепенно испаряясь в процессе работы агрегата.

direct

Владельцу остается только контролировать уровень воды в поддоне, вовремя сливая скопившуюся жидкость.

Под системой No Frost понимают способ работы холодильника, при котором внутреннее пространство камер постоянно вентилируется, что препятствует образованию наледи на стенках, при равномерной температуре воздуха внутри прибора.

no frost

Поток воздуха разносится по всему объему, поддерживая равномерную температуру, без необходимости периодической разморозки агрегата. Эта мера потребуется единожды в год, чтобы вымыть прибор.

Особенности такого устройства — в равномерном охлаждении продуктов, отсутствии влияния теплого воздуха при открывании дверцы на работу агрегата. Недостатки — усложнение конструкции и возрастание потребления электроэнергии.

Знание особенностей работы холодильника поможет владельцу разобраться в сути проблемы. Но ремонт этих агрегатов требует специальных знаний и навыков, применения особого оборудования, что невозможно без условий, созданных в сервисных центрах. Поэтому самостоятельно вмешиваться в работу холодильника рекомендуется только в ситуации, когда владелец точно знает причину, а предпринятые действия не повредят аппарат.

Читайте также: