В чем измеряется температура нагревателя и холодильника

Обновлено: 16.05.2024

КПД тепловой машины связан с количеством теплоты, полученным за цикл от нагревателя, и количеством теплоты, отданным холодильнику, соотношением:

КПД - формула

Полезная теплота (энергия) - энергия, израсходованная только на достижение поставленной цели (в общем плане).

Полная энергия - общее количество затраченной энергии (то есть с учётом потерь на какие-либо факторы).

Полная энергия (для тепловой машины) - сумма полезной энергии и энергии, и энергии, отданной холодильнику: Qполн.=Qполезн.+Qхол.

Значит, полезная энергия равна разности полной энергии и энергии, отданной холодильнику: Qполезн.=Qполн.-Qхол.

Если известен процент КПД, то количество теплоты можно рассчитать с помощью пропорций. зная лишь одну из составляющих теплоты и КПД, можно вычислить остальные составляющие. Проценты КПД прямо пропорциональны полезной работе. Например, если КПД тепловой машины равен 10% и эта машина машина совершила работу например в 20 ДЖ за цикл работы, то вся теплота (100%) равна 200 Дж, из которых 180 (90%) отдано холодильнику.

Зависимость КПД от температуры

η=(Tн-Tх)/Tн - КПД равен отношению разности температур нагревателя и холодильника к температуре нагревателя.

Надо учитывать, что температура холодильника не может быть выше температуры нагревателя, иначе тепловая машина не имеет смысла существования.

При неизменной температуре холодильника, чем выше температура нагревателя, тем выше КПД, зависимость по гиперболе.

При неизменной температуре нагревателя, чем выше температура холодильника, тем ниже КПД (здесь зависимость прямолинейная).

Внутренняя энергия газа является функцией состояния газа, то есть зависит только от того, в каком состоянии находится газ. Если газ в результате циклического процесса возвращается в исходное состояние, изменение его внутренней энергии будет равным нулю.

Если на диаграмме p-V площадь фигуры, ограниченной линиями циклического процесса отлична от нуля, то газ совершил работу.

При циклическом процессе на диаграмме p-V, если газ совершил работу, значит суммарное количество полученной и отданной теплоты равно нулю, так как всё полученное количество теплоты послностью расходуется на изменение внутренней энергии и на совершение работы газом. Газ при возвращении в исходное состояние имеет ту же внутреннюю энергию, так как она является функцией состояния, а значит, вся полученная энергия была потрачена на работу.

КПД тепловой машины можно увеличить, уменьшив температуру холодильника или увеличив температуру нагревателя.

После совершения любого циклического процесса газ возвращается в первоначальное состояние. Внутренняя энергия является функцией состояния, а значит в результате совершения циклического процесса её изменение равно нулю.

На диаграмме p-T газ не совершает работу, если прямая графика изменения его состояния проходит через начало координат, так как в этом случае объём не изменяется.

Положительное количество теплоты самопроизвольно не может перейти от более холодного тела к более горячему.

Нельзя создать циклический тепловой двигатель, с помощью которого можно энергию, полученную от нагревателя, полностью превратить в механическую работу.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что КПД не может равняться 100%.

Постулат Клаузиуса: "Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Тепло самопроизвольно может переходить только от более горячего тела к более холодному.".

Постулат Томпсона (Кельвина): "Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара".

Возможна передача энергии от тела с меньшей температурой к телу с большей температурой путём совершения работы.

Внутренняя энергия фиксированного количества одноатомного идеального газа зависит только от температуры: ΔU=(3/2) v R ΔT.

Цикл Карно состоит из двух адиабат, изотермического сжатия и расширения. Внутренняя энергия газа изменяется на адиабатах, то есть на двух участках этого цикла.

Конечно, сравнение лишь двух циклов с циклом Карно не может служить доказательством максимальной (по КПД) эффективности последнего. Но даже если мы переберем все мыслимые циклы, то все равно искомого доказательства не получим. Ведь в цикле Карно в качестве рабочего тела используется идеальный газ. Быть может, если заставить работать какое-либо другое вещество, мы сумеем превзойти КПД цикла Карно? Вообразим, что такая тепловая машина X принципиально возможна, и посмотрим, к каким последствиям это приведет. Используя эту гипотетическую тепловую машину с КПД х, соорудим новую установку: соединим машину X с холодильной установкой Карно и подсоединим их к одному и тому же нагревателю (находящемуся при температуре Т1) и холодильнику (находящемуся при температуре Т2). Схема установки изображена на рис. 5.6.


Рис. 5.6. Гипотетическая тепловая машина, позволяющая обосновать невозможность вечного двигателя второго рода

Как будет работать наш агрегат? Машина X забирает теплоту Q1 от нагревателя, часть ее превращает в полезную работу

передает холодильнику. Вся полезная работа А (предполагается, что исключены потери энергии) используется для приведения в действие холодильной установки Карно, КПД которой равен

а холодильный коэффициент

(см. выражения (5.13)). Это значит, что установка Карно забирает из холодильника теплоту

и передает нагревателю теплоту

где, напомним, С КПД тепловой машины Карно.

В результате действия агрегата из двух машин получился следующий итог. Никакой работы не произведено, так как вся работа от действия тепловой машины X потрачена на приведение в действие холодильной установки Карно. От холодильника отнято количество теплоты

Точно такое же количество теплоты передано нагревателю: как следует из (5.15),

Так что с законом сохранения энергии у нас все в порядке, но если Х > С, то

Это значит, что наш агрегат без всякой работы внешних сил передал какое-то количество теплоты от холодильника к нагревателю. Казалось бы, что беспокоиться не о чем, раз закон сохранения энергии не нарушен. Но никто в природе не наблюдал таких процессов передачи тепла от холодных тел к горячим, при которых в окружающей среде не происходило каких-либо изменений. В конечном итоге на основе опытных фактов было сформулировано второе начало термодинамики:

Невозможны термодинамические процессы, единственным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому.

Не следует думать, что второе начало термодинамики запрещает передачу тепла от холодного тела к горячему. Отнюдь нет, в холодильной установке так и происходит. Но ключевое слово в формулировке второго начала — это слово единственный. Передача тепла от холодного тела к нагретому — не единственный результат действия холодильной установки, она связана с внешним источником, за счет работы которого и функционирует.

Многочисленные опыты и наблюдения привели ко второму началу термодинамики и пониманию, что оно является фундаментальным законом природы. Коль скоро это так, то из второго начала следует вывод: КПД любой гипотетической тепловой машины X не превосходит КПД машины Карно, работающей в том же интервале температур:

Последнее означает, что минимальная температура рабочего тела машины Х не меньше температуры холодильника машины Карно и максимальная температура рабочего тела машины Х не больше температуры нагревателя машины Карно. Если эти неравенства не выполнены, то соотношение между КПД двух машин может быть любым. Данное обстоятельство явно учтено в комбинированной машине, изображенной на рис. 5.3: у машины Х и машины Карно общие нагреватель и холодильник.

У второго начала термодинамики есть и другая формулировка:

Невозможно осуществление периодического процесса, единственным результатом которого было бы получение работы за счет тепла, взятого из одного источника.

Иными словами, нельзя построить установку, где все тепло Q1, полученное от нагревателя, преобразовывалось бы в полезную работу Ац = Q1. Тогда КПД такой установки (ее называют вечным двигателем второго рода) равнялся бы единице и превысил бы КПД цикла Карно. Таким образом, второе начало термодинамики запрещает существование вечного двигателя второго рода: какое-то количество полученного тепла обязательно должно быть передано другим телам (холодильнику). Изобретателям остается только пожалеть об этом. Как было бы здорово, если бы можно было использовать огромную тепловую энергию, накопленную, скажем, в Мировом океане! Увы, мы вынуждены сжигать топливо, что приводит и к расходованию природных ресурсов, и к выбросу углекислого газа и прочих продуктов сгорания, и к тепловому загрязнению окружающей среды вследствие принципиальной необходимости отводить часть теплоты в атмосферу или водоемы, играющие роль холодильника.

Вопрос о КПД тепловых машин тесно связан с проблемой обратимости термодинамических процессов.

Обратимый процесс — это термодинамический процесс, который может быть проведен в обратном направлении через ту же последовательность равновесных состояний, что и в прямом направлении; при этом в окружающей среде не произойдет никаких изменений.

Обратимость процессов в термодинамике сродни отсутствию трения в механике. Так же как в механике наилучшим механизмом является механизм без трения, так и здесь наилучшей тепловой машиной является обратимая машина. Чтобы показать это, снова обратимся к нашему агрегату на рис. 5.3. Мы не предполагали, что машина X обратима, но получили, что ее КПД не может превышать КПД тепловой машины Карно, работающей в паре с ней в обратном направлении:

Пусть теперь машина X будет обратимой. Запустим наш агрегат в обратном направлении: машина Карно производит полезную работу, и она используется для запуска машины X как холодильной установки. Но тогда с помощью таких же аргументов мы получим противоположное неравенство

Из двух противоположных неравенств следует единственный вывод: КПД обеих машин равны:

Таким образом, все обратимые тепловые машины имеют одинаковый КПД, совпадающий с КПД машины Карно. Необратимые же машины имеют меньший КПД.

Какие машины в принципе могут быть обратимыми? Мы видели, что тепло может течь только от нагретых тел к холодным. Это и создает необратимость и неравновесность подобных процессов. Есть два исключения. В адиабатном процессе вообще не происходит передачи тепла. Медленно сжимая поршнем газ в теплоизолированном сосуде, мы совершаем работу, нагревая при этом газ. Если отпустить поршень, то газ адиабатно расширится, охладившись до прежней температуры и совершив то же количество работы за счет своей внутренней энергии. Мы имеем дело с обратимым процессом. Другой обратимый процесс — это передача тепла от одного тела к другому при одинаковой температуре тел. Тогда тоже нет выделенного направления переноса тепловой энергии, и такой (изотермический) процесс также будет обратим, он должен происходить бесконечно медленно и поэтому будет равновесным. Таким образом, обратимыми могут быть адиабатный и изотермический процессы и любой цикл, построенный из таких процессов. С одним из них — циклом Карно — мы уже знакомы.

Но если тепло переносится при разных температурах контактирующих тел и тем более, если в системе есть трение или иные потери энергии, если в газе возникают ударные волны, вихри, турбулентности и т. п., то процесс будет неравновесным и необратимым. Так, взрыв паров бензина в цилиндре автомобильного двигателя не является обратимым процессом: движение поршня в обратном направлении никогда не приводит к рекомбинации продуктов взрыва обратно в пары бензина.

Величина КПД работы тепловой машины зависит от разности температур нагревателя и холодильника. Максимальное значение КПД может быть получено при условии, что Тч 0 К, то есть холодильник работает при абсолютном нуле. Это условие практически нереализуемо. [5]

Величина КПД работы тепловой машины зависит от разности температур нагревателя и холодильника. Максимальное значение КПД может быть получено при условии, что Т2 0 К, то есть холодильник работает при абсолютном нуле. Это условие практически нереализуемо. [6]

Величина КПД работы тепловой машины зависит от разности температур нагревателя и холодильника. Максимальное значение КПД может быть получено при условии, что Г2 0 К, то есть холодильник работает при абсолютном нуле. Это условие практически нереализуемо. [7]

Следовательно, величина работы, производимая тепловой машиной, работающей по идеальному циклу Карно, зависит от разности температур нагревателя Т и холодильника Г2 и соотношения объемов рабочего тела в системе. [8]

Следовательно, величина работы, производимая тепловой машиной, работающей по идеальному циклу Карно, зависит от разности температур нагревателя Т и холодильника Т2 и соотношения объемов рабочего тела в системе. При этом можно отметить, что изменение внутренней энергии At / осталось постоянным, а работа была произведена только за счет частичного расходования энергии нагревателя на изменение состояния рабочего тела. [9]

С увеличением скорости потока величина теплопотерь Qo будет изменяться в основном по той же причине: уменьшится разность температур нагревателя и стенки кожуха и одновременно несколько деформируется температурное поле. [10]

Следовательно, величина работы, производимая тепловой машиной, работающей по идеальному циклу Карно, зависит от разности температур нагревателя TI и холодильника Т2 и соотношения объемов рабочего тела в системе. [11]

В самой совершенной машине может быть превращена в работу лишь определенная коэффициентом полезного действия доля энергии, сообщенной машине через теплопередачу, равная отношению разности температур нагревателя и холодильника к температуре нагревателя. [12]

В самой совершенной машине может быть превращена в работу лишь определенная коэффициентом полезного действия доля энергии, сообщенной машине через теплопередачу, равная отношению разности температур нагревателя и холодильника к температуре нагревателя. [13]

Необходимо обеспечить хорошие тепловые контакты образца как с нагревателем, так и с тепло-приемником. Разность температур нагревателя и медного блока измеряется с помощью дифференциальной термопары; снимается временной ход показаний U гальванометра, включенного в цепь этой термопары. [14]

Эта формула мож г служить для определения теплового излучения цилиндрического радиатора водяного или парового отопления, температура которого протекающей жидкостью поддерживается постоянной, а наружу излучается тепло в окружающую среду. С обозначает тогда разность температур нагревателя к окружающей среды. [15]

В тепловых двигателях используется энергия сгорающего топлива. Однако, не вся энергия сгорающего топлива затрачивается на полезную работу, часть энергии безвозвратно рассеивается в окружающую среду.

Чем меньше эта утерянная часть теплоты, тем выше будет эффективность двигателя и его коэффициент полезного действия. Тем больше полезной работы сможет совершить газ при расширении, толкая поршень двигателя, или раскручивая диск газовой турбины.

Элементы тепловой машины

Конструкции тепловых машин отличаются разнообразием. Однако, из каких бы частей двигатель не состоял, он всегда содержит рабочее тело, холодильник и нагреватель (рис. 1).

Например, в двигателе внутреннего сгорания рабочим телом будут пары топлива и воздух.

В двигателе внутреннего сгорания роль нагревателя совместно выполняют свеча и поршень. Однако, поршень выполняет функции нагревателя только тогда, когда он сжимает газ. А свеча зажигает сжатый газ с помощью искры и вызывает горение топлива.

Чтобы передать остатки тепловой энергии атмосфере, двигатели с воздушным охлаждением имеют специальные ребристые поверхности на наружной части цилиндров.

А двигатели, в которых используется жидкостное (водяное) охлаждение, содержат насос, прокачивающий жидкость в специальных полостях двигателя и радиатор с вентилятором. Жидкость интенсивно охлаждается в радиаторе, а вентилятор обеспечивает обдув, чтобы ускорить охлаждение. Температура охлаждающей жидкости всегда выше температуры окружающего воздуха.

Какие функции выполняет каждый элемент

От нагревателя рабочее тело — газ, или пар, получает запас тепловой энергии (рис. 2). Затем, полученная энергия делится на две, как правило, неравные части. За счет одной части совершается работа.

А оставшаяся часть передается холодильнику (например, атмосфере) и рассеивается окружающей средой.

Роль холодильника в тепловом двигателе

Совершая работу, рабочее тело – расширяющийся газ, охлаждается. Температура \(T_\), до которой газ охладился, называется температурой холодильника.

Так как газ, расширяясь, охлаждается, а при охлаждении энергию нужно куда-то девать, то никакая тепловая машина без холодильника работать не сможет. Чтобы функционировать, тепловая машина обязательно должна отдавать часть тепловой энергии холодильнику.

Обычно температура \(T_\) немного выше температуры окружающей среды. Но если речь идет о паровых машинах, оснащенных специальным приспособлением для конденсации отработанного пара и его охлаждения – конденсатором, то \(T_\) может быть несколько ниже температуры окружающей атмосферы (рис. 3).

Рис. 3. Если холодильником служит атмосфера, то температура холодильника выше атмосферной, а если – конденсатор, то температура холодильника ниже температуры окружающей среды

Примечание: Паровой конденсатор применяется только в конструкциях паровых двигателей.

На какие части делится энергия нагревателя

Мы выяснили, что за счет одной части энергии газ совершает работу. Вторая часть полученной от нагревателя энергии передается холодильнику, который затем рассеивает ее в окружающее пространство (рис. 4).

Эта теплота выбрасывается в атмосферу вместе с отработанным паром, или сгоревшими выхлопными газами турбин и двигателей внутреннего сгорания – то есть, теряется безвозвратно. Главное то, что никакой газ не превращает свою внутреннюю энергию в работу полностью. Часть энергии неизбежно будет утеряна.

На полезную работу тратится только часть полученной энергии.

Рис. 4. Энергия нагревателя частично расходуется на совершение работы, оставшаяся часть теряется в окружающую среду

Посмотрев на рисунок 4, легко составить связь между энергией нагревателя, работой и энергией холодильника.

\(\large Q_ \left(\text \right) \) – тепловая энергия, полученная от нагревателя;

\(\large Q_ \left(\text \right) \) – тепловая энергия, переданная холодильнику;

\(\large A \left(\text \right) \) – работа, которую совершил расширяющийся газ (пар);

Так как часть энергии теряется, работа всегда будет меньше полученной энергии. Работу и энергию измеряют в джоулях. Работа – это затраченная энергия, то есть, разница между конечной и начальной энергией.

\[\large \boxed < Q_— \left| Q_ \right| = A >\]

Формулы коэффициента полезного действия

Мы уже выяснили, что работа газа всегда меньше полученной теплоты. Чтобы ответить на вопрос, какую часть от полученной теплоты будет составлять работа, составим дробь:

\(\large A \left(\text \right) \) – работа газа;

Числитель этой дроби всегда меньше знаменателя, математики такие дроби называют правильными. Если КПД теплового двигателя описывается правильной дробью, значит, он не может превышать единицу (рис. 5).

КПД теплового двигателя не превышает единицу, так как описывается правильной дробью.

Если подставить в числитель выражение для работы, получим развернутое выражение для вычисления КПД:

Правая часть уравнения – это две дроби, имеющие одинаковые знаменатели. Если записать правую часть в виде отдельных дробей, то можно получить такое соотношение:

Подставим его в выражение для КПД и получим еще одну формулу:

Какой максимальный КПД может иметь тепловой двигатель

Талантливый французский ученый и инженер Сади Карно в 1824 году придумал идеальную тепловую машину. В качестве рабочего тела в ней выступал идеальный газ. А сосуд, в который заключен газ, обернут теплоизоляцией, которую можно мысленно снять, когда возникнет такая необходимость.

Проведя мысленный эксперимент, Карно рассчитал, какую часть полученной энергии можно превратить в полезную работу при идеальных условиях. Другими словами, он рассчитал, какой максимально возможный КПД может иметь идеальный тепловой двигатель.

Для КПД идеального двигателя он получил такую формулу:

\(\large T_ \left(K\right) \) – температура нагревателя в градусах Кельвина;

\(\large T_ \left(K\right) \) – температура холодильника в градусах Кельвина;

Из формулы следует:

Чем больше различаются температуры нагревателя и холодильника, тем выше будет КПД.

Если температура нагревателя сравняется с температурой холодильника, то полезной работы машина не совершит \(\large \eta = 0 \).

Максимальный КПД даже для идеального теплового двигателя всегда меньше единицы.

Температура холодильника не может равняться абсолютному нулю, так как достигнуть абсолютного нуля температуры не получается.

Примечание: В идеальном двигателе нет потерь энергии, так как полностью отсутствует трение между его движущимися частями. В реальных двигателях трение есть, поэтому КПД реальных двигателей всегда ниже, чем КПД идеального двигателя.

КПД реальных тепловых двигателей

КПД лучших образцов реальных двигателей, выпускаемых мировой промышленностью:

  • паровых машин — менее 10 процентов.
  • большинства двигателей внутреннего сгорания – до 30 процентов.
  • газовых турбин — примерно 40 процентов.
  • двигателя внутреннего сгорания Дизеля – около 44 процентов.

В настоящее время инженеры и ученые-физики работают над тем, чтобы в реальных двигателях уменьшить трение и потери тепловой энергии. Чтобы повысить давление в цилиндре, применяют дополнительные компрессоры и турбины. Это дает выигрыш еще в несколько процентов полезности, однако, сокращает срок службы таких двигателей.

Читайте также: