Виды ресиверов в холодильнике

Обновлено: 18.05.2024

Воздушные ресиверы (иное название – воздухосборники) представляют собой металлические сосуды, внутри которых находится сжатый воздух.

Они оснащены предохранительным клапаном, предназначенным для сброса газа при скачках давления в сети; входными и выходными патрубками для подключения в сеть и прохождения газа из ресивера; патрубком для слива конденсата.

Необходимость в установке ресивера обусловлена тем, что компрессор в сеть сжатого воздуха выдаёт газ порциями, это может быть причиной поломки или снижения качества продукции предприятия, т. к. практически все виды оборудования очень чувствительны к пульсациям сжатого воздуха.

Ресиверы предназначены для подавления этих пульсаций при работе компрессоров. При сглаживании колебаний давления сжатого воздуха работа компрессора становится более равномерной, пусков двигателя становится меньше. За время нахождения воздуха в ресивере его температура падает, образуется конденсат.

Это еще одна функция ресивера – хранение и охлаждение сжатого воздуха. Воздухосборник выступает источником сжатого воздуха при его повышенном потреблении за короткий промежуток времени, если возникли перебои в работе компрессора.

Виды ресиверов и область их применения

Воздухосборник применяется в составе компрессорных станций (КС), азотных, аммиачных и хладоновых установок для хранения и производства сжатого воздуха, азота, кислорода и т.п.

Воздушные ресиверы бывают:

  • линейные. Их устанавливают между регулирующим вентилем и конденсатором. Такие ресиверы служат для компенсации различий в заполнении жидкостью испарительного оборудования во время скачков тепловой нагрузки. Освобождая от жидкости конденсатор, они создают поток жидкого агента, двигающийся равномерно к регулирующему вентилю. Поддерживаемый на одном уровне хладагент становится гидравлическим затвором, который препятствует перетеканию пара в испаритель.
  • защитные. Их устанавливают ниже определенной отметки, где размещено оборудование испарительной системы. Предназначены для слива жидкости из отделителей жидкости и испарителей в безнасосных системах снабжения хладагентом.
  • дренажные (РД иди РДВ). Такие ресиверы нужны для слива жидкого хладагента из трубопроводов и агрегатов холодильной установки при их ремонте и в ходе их эксплуатации. циркуляционные (РЦЗ и РКЦ). Резервуары, которые заполнены жидким хладагентом, предназначены для обеспечения непрерывной работы циркуляционного насоса, подающего в испарители жидкость.
  • Циркуляционные воздушные ресиверы применяют в насосно-циркуляционных агрегатах по снабжению жидким хладагентом испарительных систем. Воздушные дренажные ресиверы РД применяют как защитные, дренажные, линейные и циркуляционные ресиверы; воздушные вертикальные ресиверы РДВ используются в качестве циркуляционных и защитных ресиверов.

Цены на воздушные ресиверы, реализуемые компанией ООО “АЙРТЕХНО”, вы можете узнать в прайс-листе.

Виды ресиверов и схемы их подключения

Ресиверы бывают горизонтальные и вертикальные.

Горизонтальный воздухосборник обычно входит в состав поршневого либо винтового компрессора.

Горизонтальные воздухосборники устанавливают для компактного расположения на нем компрессорного блока и электродвигателя.

Для потребностей крупных предприятий ресиверы могут достигать объем до 80 м3, плюсы горизонтальных ресиверов - их устойчивость и простота обслуживания.

Вертикальные воздухосборники могут существенно сэкономить площади в производственном цикле, что в итоге отражается и на стоимости изделия.

На предприятии обычно устанавливают несколько десятков вертикальных ресиверов, подключая их последовательно или параллельно.

Вариант параллельного расположения воздухосборников имеет существенное преимущество: пропускная способность системы становится равна сумме пропускных способностей всех ресиверов в сети. Кроме того, можно в случае ремонта выключить один из ресиверов системы.

При последовательном расположении воздухосборников в сети пропускная способность ниже, но каждый ресивер служит также своеобразным мини-сепаратором, очищая воздух от избытка влаги и масла.

Проходя через последовательно подключенные воздухосборники, воздух многократно очищается от эмульсии из влаги и масла, снижая нагрузку на агрегаты и продлевая срок их службы.

Max пропускная способность системы с последовательным подключением ресиверов равна min пропускной способности какого-либо ресивера всей системы.

На предприятиях сейчас наблюдается тенденция избегать покупки ресиверов с большим объемом, устанавливая определенное количество небольших воздухосборников (до 1 м3). Установка таких ресиверов не контролируется Ростехнадзором.

Маслоотделители. В компрессионных холодильных машинах вместе со сжатыми парами хладагента из цилиндра в систему уносится часть смазочного масла, которое затем распределяется по поверхности теплообменной аппаратуры, ухудшая работу холодильной установки. В установках, работающих на аммиаке, фреоне-22 и фреоне-13, предусмотрены специальные аппараты — маслоотделители. Используют их и в установках с пропановыми и этиленовыми поршневыми компрессорами.

Пары смазочного масла ХА (фригус) тяжелее паров аммиака и имеют более высокую температуру конденсации при том же давлении. Пары аммиака, попадая из нагнетательного трубопровода сравнительно малого диаметра в маслоотделитель, диаметр которого в 5—10 раз больше, резко теряют свою скорость, меняя при этом направление движения, и капельки масла падают вниз. Отделившееся масло периодически перепускается в другой аппарат—маслосборник, который соединен со стороной низкого давления установки.

Давление в маслосборнике периодически понижается до давления испарения, при этом большая часть принесенного с маслом аммиака возвращается в систему. После этого линия, связывающая маслосборник со
стороной низкого давления, перекрывается, и масло спускается либо в бочку, либо в специальную стационарную емкость для хранения отработанного масла.

маслоотделитель

Рис. 45. Маслоотделитель ОММ:

1, 2, 4 — штуцеры,
3 — отбойники масла

Преимущественное распространение получили маслоотделители ОММ (рис. 45), в которых пары аммиака из компрессора по штуцеру 1 направляются под слой жидкого аммиака, поступающего из конденсатора через штуцер 4. Происходит охлаждение паров аммиака с одновременным вымыванием из них масла. По пути к выходу паров через боковой штуцер 2 происходит дополнительное отделение масла в решетчатых отбойниках 3. В маслоотделителях такого типа остается более 90% масла, уносимого из компрессора.

Для отделения масла в испарительных системах аммиачных установок на нагнетании насосов, подающих жидкий аммиак, устанавливают гидроциклоны. Напором насоса масло, более тяжелое, чем аммиак, отбрасывается к стенкам гидроциклона и стекает в нижнюю часть аппарата, откуда его периодически удаляют.

В маслоотделителях, работающих на фреоне-22, предварительно охлаждают его пары водой. После охлаждения пары проходят через слой керамических колец, задерживающих масло, которое затем стекает вниз и периодически, по мере накопления, перепускается в картер компрессора.

маслосборник


Рис. 46. Маслосборник 500СМ:
1 — вентиль для спуска масла,
2 — вход масла из маслоотделителя,
3 — выход аммиака во всасывающую линию,
4 — смотровое стекло

Маслосборник (рис. 46) снабжен смотровым стеклом 4, позволяющим наблюдать за уровнем собранного масла и судить о полноте его слива через спускной вентиль 1.

Промежуточные сосуды применяют в двухступенчатых установках для охлаждения паров хладагента, выходящих из цилиндра низкого давления. Рабочее давление в них не более 15 кгс/см 2 .

промежуточный сосуд

Рис. 47. Промежуточный сосуд:
1 — штуцер для входа аммиака в змеевик,
2 — вентиль для спуска масла,
3 — указатель уровня,
4 — штуцер выхода газообразного аммиака,
5 — штуцер для предохранительного клапана,
6 — штуцер для входа газообразного аммиака,
7 — штуцер для входа аммиака от воздухоотделителя,
8 — ниппель к манометру,
9, 12 — фланцы для присоединения поплавкового регулятора,
10 — метка уровня жидкого аммиака в промсосуде,
11 — штуцер для входа жидкого аммиака из поплавкового регулятора,
13 — вентиль для спуска аммиака,
14 — штуцер для выхода жидкого аммиака из змеевика

В промежуточном сосуде (рис. 47), работающем под давлением нагнетания ЦНД, горячие пары аммиака поступают под слой жидкого аммиака, убыль которого непрерывно пополняется через специальный регулятор.

ЦВД отсасывает из сосуда кроме паров, поступивших из ЦНД, также и пары, образовавшиеся при охлаждении перегретых паров, пришедших из ЦНД. Чтобы не допустить уноса капель хладагента из промежуточного сосуда, в нем предусмотрены конусные перфорированные отбойники. Оборудуются они также змеевиками, по которым проходит жидкий аммиак, направляющийся в испарители. При этом он охлаждается. Одновременно промежуточный сосуд играет роль маслоотделителя, улавливая часть масла, попадающего в него из первой ступени компрессора.

Для работы в аммиачных и пропановых холодильных турбоагрегатах применяют горизонтальные промежуточные сосуды типа ПСГ-90 и ПСГ-250 с наружной поверхностью теплообмена 90 и 250 м 2 .

отделитель жидкости

Рис. 48. Отделитель жидкости 250-ОЖМ:
1 — вентиль для спуска масла,
2, 3, 4, 8 — штуцеры для аммиака,
5 - ниппель для присоединения предохранительного клапана,
6 — штуцер для дистанционного указателя уровня,
7 — метка для установки дистанционного указателя,
9 — фланец для присоединения поплавкового регулятора

Отделители жидкости устанавливают на пути аммиака из испарителя в компрессор в целях предотвращения гидравлического удара. Отделение жидкости от пара происходит за счет резкого изменения скорости и направления движения хладагента. При этом жидкость стекает в испаритель или дренажный ресивер. В отделителях (рис. 48), используемых в аммиачных и пропановых холодильных установках, имеются змеевики с жидким хладагентом, пропускаемым для подогрева оседающего масла.

Иногда через отделитель жидкости питают жидким хладагентом испарители. В этом случае он выполняет двойную функцию: отделяет капельки жидкости от паров, идущих в компрессор, и пар от жидкого хладагента, поступающего в испаритель.

линейный ресивер


Рис. 49. Линейный ресивер:
1 — фланец для присоединения уравнительной линии, 2 — вентиль для воздуха, 3 — штуцер для выхода жидкого аммиака, 4 — предохранительный клапан, 5 — вентиль для выпуска масла, 6 — штуцер для входа аммиака

Ресиверы в холодильных установках служат для хранения хладагента. По своему назначению они делятся на линейные (рис. 49), устанавливаемые между конденсатором и испарителем, и дренажные, устанавливаемые для спуска хладагента из различных аппаратов холодильной машины (отделителей жидкости, промежуточных сосудов) при ремонтах и длительных остановках. Для крупных холодильных установок применяют вертикальные дренажные ресиверы РДВ.


Рис. 50. Типы воздухоотделителей:

а — автоматизированный системы ВНИХИ,
б — четырехтрубный;

1 — штуцер для продувки,
2 — датчик уровня,
3 — смотровое стекло,
4 — усилитель реле уровня;
5, 8 — соленоидные вентили,
6 — бачок для воды,
7 — терморегулирующий вентиль

Воздухоотделители (рис. 50) предназначаются для удаления из системы неконденсирующихся газов с наименьшими потерями хладагента. Их действие основано на конденсации хладагента из паровоздушной смеси, отбираемой в верхних точках конденсаторов, с последующим сбросом несконденсировавшегося газа через сосуд с водой для аммиачных установок и сосуд с маслом, для фреоновых.

Грязеуловители или газовые фильтры (рис. 51) служат для защиты компрессоров от попадания окалины, грязи и других механических примесей.

грязеуловитель


Рис. 51. Грязеуловитель

жидкостный фильтр


Рис. 52. Жидкостный фильтр

Жидкостные фильтры (рис. 52) устанавливают перед регулирующими вентилями. Во фреоновых установках их дополняют осушителями воды, так как вымерзание влаги, попадающей под иглу или клапан вентиля, может привести к прекращению циркуляции фреона в системе.

Баки-концентраторы, в которых готовят рассол, оборудованы люками для загрузки хлористого натрия и хлористого кальция, а также штуцерами для подвода пара или горячей воды.

Для дренажа рассольных систем во время их ремонта устраивают заглубленные металлические или железобетонные резервуары, покрытые защитным слоем.

Это чудо бытовой техники есть у каждого на кухне. Мы просто пользуемся им и никогда не задумывались, а почему в нём холодно? Я хочу вам наглядно показать принцип работы и устройство холодильника, а так же его родного брата - бытового кондиционера. За одно расскажу как работают холодильные витрины в супермаркетах.
И так начнем. Сердце холодильника и кондиционера - это компрессор. Устройство, которое занимается перекачкой хладагента внутри системы.

Вот этот "черный ящик" и есть основной агрегат холодильной установки. Компрессор кондиционера от него мало чем отличается.

Как устроен холодильник

1

Хладагент - он же фреон, имеет множество модификаций. В настоящее время в бытовых холодильниках используется R600a, а в кондиционерах R410a.

На этой схеме наглядно показан принцип работы холодильной установки. Стрелочки показывают направление движения фреона в системе.

Как устроен холодильник

2

Наверняка каждый из вас когда-то трогал черную решетку сзади у холодильника - она называется конденсатор (3). Во время работы компрессора(1) он будет всегда горячим - там находится газообразный фреон под довольно высоким давлением. Компрессор бытового холодильника может накачать до 12 атмосфер.

Вот здесь фреон будет охлаждаться и превращаться в жидкость, чтобы потом через специальную трубку попасть в испаритель. Назначение конденсатора - собрать фреон под высоким давлением, охладить его и превратить в жидкость.

Как устроен холодильник

3

На выходе из конденсатора фреон пройдет через специальный фильтр. Фильтр имеет наполнитель из специального силикагеля, который задерживает влагу и механические примеси. Срок службы наполнителя достаточный, чтобы холодильник проработал несколько лет.


Как устроен холодильник

А если холодильник перестал работать - одной из причин может быть неисправный фильтр. Он попросту перестает выполнять свою функцию и забивается металлическими опилками от износа компрессора или подгоревшим маслом.

После фильтра начинается самое интересное. Фреон попадает в капиллярную трубку и начинает терять давление. Одновременно он начинает ЗАКИПАТЬ! Это происходит из-за особенностей фреона - у него ОТРИЦАТЕЛЬНАЯ температура кипения! Например, у фреона R404а - это МИНУС 47градусов.

Как устроен холодильник

5

Полученная на выходе из капиллярки паро-жидкостная смесь поступает в испаритель. Этот процесс называется дросселяция - резкий перепад давления через малое сечение капиллярной трубки. Они могут быть диаметром от 1,5мм до 0,3мм и длина трубки зависит от модификации фреона и типа компрессора.

Дальше - испаритель. Выглядеть он может по разному. В старых моделях - это морозильная камера (как на картинке). В новых моделях испаритель спрятан в задней стенке и обдувается вентиляторами (система No Frost). Поэтому современные холодильник практически не требуют разморозки.

Как устроен холодильник

6

В испарителе фреон будет кипеть, пока полностью не превратится в пар. При этом он забирает тепло из камеры холодильника, охлаждая находящиеся там продукты. А дальше фреон ждет снова компрессор, который запустит его по кругу: конденсатор-фильтр-капиллярка-испаритель.

Чтобы компрессор не сгорел и в вашем холодильнике была нужная вам температура в нем имеется вот такое устройство. Это термореле, которое отключает компрессор по достижении заданной температуры.

Как устроен холодильник

7

Знакомая штучка? Это всем известный бытовой кондиционер. Но если быть точным - то это только его внутренний блок, который размещен в квартире. Это - испаритель (по аналогии с холодильником). То есть в данном случае помещение и будет являться холодильной камерой.

Как устроен холодильник

8

А это наружный блок, в котором собственно находится компрессор и конденсатор. А управляете всем этим хозяйством вы, посредством пульта. Во внутреннем блоке находится система распределения воздушных потоков и вентилятор. В наружном блоке - еще один вентилятор и электронный блок управления компрессором.

Как устроен холодильник

9

Вот собственно и всё про бытовой холодильник и кондиционер. Но есть еще и "супер-холодильник" - система выносного холода.

Все мы ходим в магазины и видели там длинные ряды витрин. Все они работают от централизованной системы выносного холода, поэтому вы никогда не увидите у них привычные черные решетки (как у домашнего холодильника).

Как устроен холодильник

10

агрегат - компрессорный блок и конденсатор, находится вне торгового зала. А вся система спрятана от посторонних глаз.

В отличие от бытовых холодильников - это уже целая компрессорная станция. И таких должно быть две. Зачем? Ответ очень прост - есть два вида продукции: охлажденная и замороженная. Так вот для каждого вида продукции и устанавливают свою централь с компрессорной группой и конденсатором

Как устроен холодильник

11

Для компрессоров строится специальное помещение в подсобке магазина и попасть туда может только обслуживающий персонал (механик по холодильному оборудованию) организации, которая занимается обслуживанием и ремонтом такого оборудования.

Так как холодильная централь имеет много потребителей (витрин), то и фреона требуется достаточно много. А "излишки" собираются в ресивер. Вот он на картинке - вертикальный бочонок черного цвета. Ресивер стабилизирует количество фреона в системе и "хранит" неиспользуемый.

Как устроен холодильник

12

Фильтр в таких системах будет посерьезней, чем у бытового агрегата и ставится в каждой витрине. Увидеть устройство витрины вам не позволят декоративные накладки и полки. Но в принципе оно мало чем будет отличаться от системы NoFrost

Как устроен холодильник

13

Это испаритель промышленного холодильника. Примерно то же самое находится внутри задней стенки холодильника NoFrost. Плюс к этому еще и мощные вентиляторы, которые выдувают холодный воздух в охлаждаемую камеру. За счет конвекции испаритель практически не успевает обмерзать и почти не требует разморозки.

Как устроен холодильник

14

За режимом оттайки следит электроника с помощью температурных датчиков. Вот он - тонкий черный проводок с "капелькой" в самом верху. И если система работает правильно - испаритель будет оставаться чистым.

Это основное отличие магазинной витрины - ТРВ (терморегулирующий вентиль). Он заменяет в витрине капиллярную трубку и отвечает за количество фреона, поступающее в испаритель витрины.

Как устроен холодильник

15

Проходя мимо витрин можно заметить вот такие электронные табло. Это микропроцессор, который управляет температурным режимом. Он намного точнее, чем термореле в бытовом холодильнике, и имеет несколько настраиваемых функций.

Как устроен холодильник

16

А этот непонятный прибор - соленоидный клапан. Он необходим для перекрытия подачи фреона в испаритель витрины, когда процессор дает команду на оттайку. Увидеть его так же невозможно, потому что он спрятан под самой нижней полкой витрины и находится рядом с испарителем.

Как устроен холодильник

17

Наверное многие замечали вот такие устройства возле крупных магазинов? Это и есть конденсатор установки выносного холода. И чем больше в магазине витрин - тем больше будет конденсатор. Соответственно и количество фреона в таких системах измеряется уже десятками килограмм.

Как устроен холодильник

18

Так же система выносного холода имеет еще много разных устройств от механических до электронных, которые помогают ей стабильно работать в любое время года. А "самое главное устройство" - это грамотный механик-холодильщик, который сумеет настроить систему на правильный режим работы и будет поддерживать её работоспособность в течение всего срока эксплуатации.

Теперь вы знаете, как работают холодильник, кондиционер и витрины в магазинах.

Как устроен холодильник

19

Ресивер холодильной установки

Изобретение относится к холодильной технике, а именно к прогрессивным аммиачным установкам с насосно-циркуляционными схемами, и может быть использовано в других отраслях промышленности, например в химической. Ресивер холодильной установки содержит цилиндрический корпус с разделительной колонкой. В нижней части корпуса соосно с ним размещен вертикальный цилиндрический стояк с патрубками подвода хладагента и отвода масла. Ресивер содержит полый цилиндрический стакан, расположенный соосно внутри стояка и снабженный патрубком отвода жидкого хладагента. Ресивер содержит устройство разогрева масла. Патрубок отвода жидкого хладагента выполнен тангенциальным. Стакан снабжен коническим днищем с калиброванным отверстием. Техническим результатом является интенсификация процесса маслоотделения, приводящая к уменьшению энергозатрат при производстве единицы холода, а также повышению безопасности и надежности в работе. 2 ил.

Изобретение относится к холодильной технике, а именно к прогрессивным аммиачным установкам с насосно-циркуляционными схемами, и может быть использовано в других отраслях промышленности, например в химической.

Известен вертикальный циркуляционный ресивер со стояком, содержащий полый вертикальный цилиндрический корпус и соосно расположенный в нижней части ресивера полый стояк цилиндрической формы с патрубками подвода паров, жидкого аммиака с маслом из приборов охлаждения и жидкого хладагента с маслом от регулирующей станции, поступающих в разделительную колонку ресивера (Патент №2006761, РФ, МПК 5 F25В 43/00, опубл. 30.01.94, Бюл. №2).

Недостатком данной конструкции является недостаточное отделение масла от жидкого хладагента, и как следствие, попадание масла в испарительную систему, а так же трудоемкость процесса выпуска уловленного масла, что приводит к повышенному расходу электроэнергии на выработку единицы холода, ухудшению работы аммиачных насосов, приборов автоматики, снижению надежности и безопасности установки в целом.

Известен циркулярный ресивер со стояком, в который входит полый цилиндрический стакан, расположенный соосно внутри стояка, причем на наружной поверхности стояка патрубок размещен тангенциально, а стакан снабжен всасывающим патрубком с вертикальной врезкой в него (Авторское свидетельство №1719822, МПК F25В 43/00, опубл. 15.03.92, Бюл. №10).

Недостатком этого ресивера является невысокая эффективность и длительность процесса выпуска уловленного масла из ресивера, что приводит к ухудшению работы приборов охлаждения, приборов автоматики и, как следствие, понижает безопасность и его эффективность.

Техническим результатом настоящего изобретения является интенсификация процесса маслоотделения, приводящее к уменьшению энергозатрат при производстве единицы холода, а также повышению безопасности и надежности в работе.

Технический результат достигается тем, что с целью интенсификации процесса маслоотделения и уменьшения энергозатрат при производстве единицы холода стояк дополнительно содержит устройство разогрева масла, патрубок отвода жидкого хладагента выполнен тангенциальным, стакан снабжен коническим днищем с калиброванным отверстием.

Вертикальный (или горизонтальный) ресивер, содержащий цилиндрический корпус, в нижней части корпуса соосно с ним размещен вертикальный цилиндрический стояк с тангенциальным патрубком подвода хладагента и патрубком отвода масла, полый цилиндрический стакан, расположенный соосно внутри стояка и снабженный тангенциальным патрубком отвода жидкого хладагента.

Жидкий хладагент с маслом поступают через тангенциальный патрубок стояка в кольцевую полость, образованную наружной поверхностью стакана и внутренней поверхностью стояка. После раскрутки потока в кольцевой полости хладагент очищается от масла и, изменяя направление движения по спирали, поступает в верхнюю полость стояка, где скорость вращения жидкости значительно увеличивается за счет большой скорости вращения жидкости внутри соосно размещенного стакана, создаваемой тангенциальным расположением патрубка отвода жидкого хладагента к насосу. Из-за разницы удельных весов хладагента и масла последнее, за счет центробежных сил, отбрасывается на периферию и стекает по внутренним стенкам стояка и стакана в нижнюю полость стояка.

Сопоставительный анализ заявляемого технического решения с прототипом показывает, что предлагаемый ресивер холодильной установки отличается тем, что дополнительно содержит устройство разогрева масла, патрубок отвода жидкого хладагента выполнен тангенциальным, стакан снабжен коническим днищем с калиброванным отверстием.

На фиг.1 изображен вертикальный циркуляционный ресивер, содержащий цилиндрический корпус со стояком; на фиг.2 - сечение А-А на фиг.1.

Циркуляционный ресивер содержит цилиндрический корпус 1, стояк 2, разделительную колонку 3 с патрубком 4 для соединения по жидкости со стояком 2, стакан 5, расположенный соосно внутри стояка 2, образующий кольцевую полость, образованную наружной поверхностью стакана и внутренней поверхностью стояка 2, коническое днище 6 стакана 5 с калиброванным отверстием 7, патрубок отвода 8 жидкого хладагента, размещенный тангенциально на корпусе стакана, устройство разогрева масла 9 с питанием от сети 10, расположенный в нижней части стояка 2 патрубок 11 для выпуска уловленного масла.

Циркуляционный ресивер холодильной установки работает следующим образом.

В циркуляционный ресивер, содержащий цилиндрический корпус 1 со стояком 2, через тангенциально расположенный патрубок 4 жидкий хладагент с маслом поступает в кольцевую полость, образованную наружной поверхностью стакана 5 и внутренней поверхностью стояка 2. При тангенциальном подводе жидкости происходит вращательное движение потока и первоначальное разделение жидкой эмульсии на хладагент и масло. Из-за разницы в плотностях хладагента и масла в размере 15-20% последнее за счет центробежных сил отбрасывается на периферию и стекает по внутренней стенке стояка 2 в его нижнюю часть, а хладагент, с остатками масла изменяя направление движения, вращаясь по спирали, движется в верхнюю полость маслоотделителя, где скорость вращения жидкости значительно увеличивается за счет наложения большой скорости вращения жидкости внутри стакана 5, создаваемой тангенциальным патрубком 8 отвода жидкого хладагента при работе насоса (условно не показанного на фиг.1), что способствует более эффективному второму этапу улавливания масла в верхней части стояка 2.

Третий этап улавливания остаточного масла происходит в стакане 5, где скорость вращения жидкости самая высокая. Уловленное масло стекает в нижнюю часть стакана 5 в коническое днище 6 и далее через калиброванное отверстие 7 поступает в маслосборник стояка 2.

Поскольку масло при низких температурах имеет высокую вязкость, то перед выпуском его подогревают путем включения устройства разогрева масла 9 в сеть 10. Нагретое масло выпускается через патрубок 11.

Данное техническое решение позволяет осуществить трехступенчатое улавливание смазочного масла, решить проблему его быстрого удаления, что существенно повышает эффективность работы холодильной установки, ее безопасность, надежность и значительно снижает эксплуатационные энергозатраты.

Экономический эффект от использования предлагаемого ресивера со стояком образуется за счет снижения энергозатрат на эксплуатацию холодильной установки с насосно-циркуляционной схемой, повышения ее безопасности, в системе которой работает данное техническое решение.

Ресивер холодильной установки, содержащий цилиндрический корпус с разделительной колонкой, в нижней части корпуса соосно с ним размещенный вертикальный цилиндрический стояк с патрубками подвода хладагента и отвода масла, полый цилиндрический стакан, расположенный соосно внутри стояка и снабженный патрубком отвода жидкого хладагента, отличающийся тем, что дополнительно содержит устройство разогрева масла, патрубок отвода жидкого хладагента выполнен тангенциальным, стакан снабжен коническим днищем с калиброванным отверстием.

Читайте также: