Электромагнит в телевизоре как работает

Обновлено: 28.03.2024

Чтобы понять, как работают электромагниты, надо рассмотреть их конструкцию. Простое устройство объясняет принцип действия электромагнита. При протекании электрического заряда в теле обмотки возникает излучение магнитного поля, пронизывающее магнитопровод.

Формула магнитного потока

Внутри металла или ферромагнита, в соответствии с законами физики, формируются микроскопические магнитные поля, именуемые доменами. Их поля под внешним воздействием обмотки выстраиваются в определённом порядке. В результате магнитные силы доменов суммируются, образуя сильное магнитное поле, сообщая магнитопроводу способность притягивать массивные металлические предметы.

Важно! Чтобы остановить электромагнитную индукцию, достаточно отключить ЭМ от источника тока. При этом сохранится частица магнитного поля. Такой эффект называют гистерезисом.

Электромагниты и их применение

Вот некоторые из примеров, где они используются:

  • Моторы и генераторы. Благодаря электромагнитам стало возможным производство электродвигателей и генераторов, которые работают по принципу электромагнитной индукции. Это явление было открыто ученым Майклом Фарадеем. Он доказал, что электрический ток создает магнитноее поле. Генератор использует внешнюю силу ветра, движущейся воды или пара, вращает вал, который заставляет двигаться набор магнитов вокруг спирального провода, чтобы создать электрический ток. Таким образом, электромагниты преобразуют в электрическую другие виды энергии.
  • Практика промышленного использования. Только материалы, сделанные из железа, никеля, кобальта или их сплавов, а также некоторые природные минералы реагируют на магнитное поле. Где используют электромагниты? Одной из сфер практического применения является сортировка металлов. Поскольку упомянутые элементы используются в производстве, с помощью электромагнита эффективно сортируют железосодержащие сплавы.
  • Где применяют электромагниты? С их помощью можно также поднимать и перемещать массивные объекты, например, автомобили перед утилизацией. Они также используются в транспортировке. Поезда в Азии и Европе используют электромагниты для перевозки автомобилей. Это помогает им двигаться на феноменальных скоростях.

где применяют электромагниты в жизни

Классификация

Ротор — что это такое

ЭМ различают по способам создания магнитных полей. Существуют электромагниты трёх разновидностей:

  • электромагнит переменного тока;
  • нейтральный прибор постоянного тока;
  • поляризованный ЭМ постоянного тока.

Магниты, работающие на переменном токе, меняют направление магнитного потока вместе с удвоенной частотой электротока.

Нейтральные ЭМ, подключённые к источнику постоянного тока, создают магнитные потоки, не зависящие от направления электротока.

В поляризованных устройствах ориентировка магнитного потока привязана к направлению электрического тока. Поляризованные ЭМ состоят из двух магнитов. Один из них направляет поляризующий поток магнитного поля на второй электромагнит для его отключения.

Устройство электромагнитов

Несмотря на обширное, судя по описанной выше классификации, количество разнообразных вариантов электромагнитов, существуют определенные однотипные узлы, которые встречаются у всех ЭМ.

  • Катушка с расположенной на ней намагничивающей обмоткой
  • Подвижная часть электромагнита — якорь
  • Неподвижная часть — ярмо и сердечник

Между якорем и неподвижными частями существуют воздушные промежутки. Так вот, воздушные промежутки бывают полезными и паразитными. Полезные промежутки располагаются по возможному пути движения якоря. Паразитные промежутки лежат за пределами движения якоря.

Также существует понятие полюса. Полюсами называют поверхности магнитопровода, которые ограничивают полезный воздушный промежуток.

Конструктивные формы электромагнитов переменного тока не имеют множества вариантов, за счет того, что сердечник набирается из листов электротехнической стали. Это необходимо для борьбы с вихревыми токами.

Преимущества использования электромагнитов

Главным преимуществом электрического магнита перед постоянным источником магнитного поля заключается в том, что он приводится в рабочее состояние под воздействием электрического тока. То есть, когда нужно оказать магнитное влияние на определённую часть пространства, ток включают. Это позволяет обеспечивать ритмичную работу ЭМ, что с успехом применяется в разных видах электро оборудования, приборов и устройств.

Электромагнит можно обнаружить в электрических счётчиках, сепараторных установках, трансформаторах, теле,- и аудиотехнике и других устройствах.

Мощные магниты установлены на мостовых кранах в цехах металлургических заводов и лебёдках предприятий по сбору металлолома.



Грузоподъёмные электромагниты

Одно из первых применений ЭМ – это динамики. Звуковое устройство в своей основе имеет электромагнит, который заставляет колебаться мембрану в звуковом диапазоне.

ЭМ используются в металлоискателях для обнаружения металлосодержащих предметов под землёй, в воде и различных массивах.







Как работает электромагнит

Сам цикл работы ЭМ представляет собой следующую последовательность действий. Сначала в обмотку подается ток такой величины, при которой магнитные силы станут больше, чем силы удерживающие якорь в покое.

Далее произойдет отрыв якоря из состояния покоя и движение якоря в конечную точку полезного промежутка. Это первый этап.

На втором этапе якорь ЭМ подтянут и через него протекает ток. Как известно, ток создает термическое воздействие с течением времени. Поэтому время работы не должно превышать допустимое. На этом этапе сила тяги электромагнита максимальная.

Последний, Третий этап — аналогичен первому — ток уменьшается до нуля, магнитные силы становятся меньше сил, возвращающих якорь в состояние покоя, якорь отпадает. Далее электромагнит остывает.

Если характер его работы периодически повторяющийся, то за время до следующего цикла, ему необходимо успеть остыть.

Сверхпроводящий электромагнит

Сверхпроводимостью считают свойство материалов с сопротивлением, близким к нулю. Электромагниты с практически нулевым показателем сопротивления обладают сверхмощным магнитным полем. Сила магнитного воздействия может заставить парить в пространстве такие диамагнетики, как кусочки свинца и органические объекты.

Как было замечено физиками, металлы приобретают свойство сверхпроводимости при сверхнизкой температуре. Чтобы получить эффект сверхпроводимости, обмотки ЭМ помещают в сосуд Дьюара с жидким гелием, который снабжён клапаном для сброса паров вещества. Сверхпроводящие магниты применяют в медицинском оборудовании – аппаратах МРТ (магнитный резонансный томограф). В экспериментальных поездах на воздушной подушке применяются сверхпроводящие магниты.



Сверхпроводящий магнит

Магнетизм и электричество

Словарные определения электричества и магнетизма отличаются, хотя они являются проявлениями одной и той же силы. Когда электрические заряды движутся, они создают магнитное поле. Его изменение, в свою очередь, приводит к возникновению электрического тока.

электромагниты и их применение

Изобретатели используют электромагнитные силы для создания электродвигателей, генераторов, аппаратов МРТ, левитирующих игрушек, бытовой электроники и множества других бесценных устройств, без которых невозможно представить повседневную жизнь современного человека. Электромагниты неразрывно связаны с электричеством, они просто не смогут работать без внешнего источника питания.


Как сделать электромагнит 12в

Самый просто способ, как сделать электромагнит, – это взять обычный гвоздь, провод и батарейку. По всей длине стержня наматывают изолированный провод. Концы проводника прижимают к полюсам батарейки. Для того чтобы заряд не расходовался зря, один конец провода припаивают к положительному контакту. Другое окончание нужно делать в виде подпружиненной дуги, которую прижимают к клемме батарейки со знаком минус. На нижнем фото видно, как можно сделать электромагнит в домашних условиях.



Электромагнит своими руками

Обратите внимание! При изготовлении электромагнита с батарейкой можно использовать контактную колодку со старого устройства. Для отключения магнита будет достаточно вынуть батарейку из контактной коробки.

Электромагниты в повседневной жизни

Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.

Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.

Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.

где применяют электромагниты в быту

Расчёты

Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.

Для постоянного тока

Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.

Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.

Для переменного тока

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.



Стартер с тяговым реле

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

Электромагнит — устройство и принцип работы

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.Вики

простой электромагнит

Когда электричество проходит по проводам и крутится вокруг гвоздя (сердечника), и гвоздь приобретает свойства природного магнита (как на холодильнике (сделанного из магнитной руды)). И без гвоздя магнит может работать только значительно слабее.

Нам потребуется:

  • Железный гвоздь
  • Тонкая изолированная проволка (чем больше тем лучше)
  • Батарейка (любой мощности, не меньше 1.5V)
  • Обьекты для проверки магнита (скрепки, кнопки, булавки)
  • Устройство зачистки проводов (Необязательно)
  • Клейкая лента

Правила безопасности:

  1. Не пытайтесь подключать провода к розетке 220V. Наш электромагнит использует электричество, и когда вы подсоедините его к стандартному высокому напряжению, то тогда вас будет короткое замыкание во всём доме.
  2. У вас должно быть много свободной проволоки до батарейки. Если так будет, у вас не будет сильного электрического сопротивления, и батарейка самоуничтожится!
  3. Нашему электромагниту нужно только низкое напряжение. Если вы будете использовать высокое напряжение вас ожидает удар током.

А сейчас к инструкции: 1.Обмотайте медную проволоку вокруг гвоздя, но так чтобы с каждого конца осталось где-то 30 см, следите за тем, чтобы проволока была закручена только в одну сторону или у вас будет два маленьких поля которые будут мешать друг-другу. ВАЖНО: Проволока должна быть накручена так, чтобы она лежала не далеко от предыдущего мотка, но и не была на нём. Подсказка: Чем больше слоев тем сильнее магнит, можно сделать даже многослойную.



2.Сейчас давайте очистим концы медной проволоки (где-то 3 см), желательно делать с устройством очистки проводов. Их надо очистить для лучшего прохождения тока. После очистки, концы будут выглядеть светлее чем неочищенная.



3.Возьмите один конец проволоки и подключите его к плюсу батарейки, а затем склейте их с помощью клейкой ленты, так чтобы они касались друг-друга. И если прижать пальцем то мы запустим магнит.
ВАЖНО
: Проволока и плюс батарейки должны соединяться постоянно.



Что мы сделали: Мы соединили контакты в одну цепь (по сути это короткое замыкание) и образуют магнитное поле (об этом я уже написал выше). Чтобы ее выключить надо отпустить проволоку.

Чему мы научились: Мы узнали как устроен простой электромагнит и как его сделать и где он применяется. Всем спасибо за то что вы прочитали это до конца! С вами был kompik92. Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Большой практический интерес представляет собой магнитное поле катушки с током. Вообще по своей форме катушка напоминает пружину. Но в то время, если пружина важна в каких-либо механических системах, то катушка используется в магнетизме. Все потому что мы пропускаем электрический ток через катушку и это позволяет получить магнитное поле, сосредоточенное в основном внутри катушки и на её концах.

Посмотрите, как проходят линии магнитного поля внутри и снаружи катушки (рис. 1).

Силовые линии магнитного поля

Рис. 1. Силовые линии магнитного поля

На рис. 1. представлена ​​фотография с изображением формы силовых линий магнитного поля, полученного с помощью железных опилок. Мы видим, что линии поля внутри практически параллельны друг другу и оси катушки. На концах катушки они расходятся.

С другой стороны, в области вне соленоида, вдали от его краёв, железные опилки практически никак не упорядочены, что доказывает, что магнитная индукция там мала — магнитное поле слабое. Напоминает ли вам что-нибудь такое расположение линий магнитного поля? Такое расположение линий магнитного поля обуславливает множество применений катушки в технике.

Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010.

На рис. 2 показаны силовые линии, источником которых является катушка, состоящая из пяти витков проводника с электрическим током, а на рис. 3 показаны силовые линии, возникающие из кругового тока. Здесь аналогичный характер линий. Мы предполагаем, что в случае с катушкой мы имеем дело с суммированием полей, исходящих от отдельных катушек, в результате чего внутри катушки образуется почти однородное поле.

Линии поля, источником которых является катушка

Рис. 2. Линии поля, источником которых является катушка

Линии поля кругового тока

Рис. 3. Линии поля кругового тока

Обратите внимание, что чем плотнее (ближе друг к другу) намотаны катушки, тем больше они напоминают круги (окружности), и тогда мы практически имеем дело с сильным и однородным полем внутри катушки. Такое поле показано на рисунке 4. А соответствующая этой фигуре реальная катушка с несколько иным числом витков показана на рис. 5.

Рис. 4. Сильное и однородное поле внутри катушки Рис. 5. Катушка

На практике мы используем катушки с еще более плотно намотанными витками (см. рисунок 6). Можно использовать даже несколько слоев катушек. Все это делается для того, чтобы получить максимально возможное значение магнитной индукции внутри катушки. Она прямо пропорциональна плотности намотки, т.е. количеству витков на единицу длины катушки.

Плотно намотанная катушка

Рис. 6. Плотно намотанная катушка

Для плотно намотанной катушки с малым диаметром по отношению к её длине зависимость магнитной индукции внутри неё выражается следующим образом: B = ( μ0 * μr * I * N ) / L , где

где μ0 — магнитная постоянная, μr — магнитная проницаемость среды внутри катушки, I — значение силы тока, протекающего в обмотке, N — число витков, L — длина катушки.

Из вышеприведенной формулы можно, например, сделать следующий выводы:

  • Если выполнить замену имеющейся катушки на другую катушку с бóльшим количеством витков проволоки, то она будет притягивать больше железных предметов при той же силе тока. Это говорит о том, что магнитное действие катушки с электрическим током тем сильнее, чем больше число витков в ней.
  • При увеличении силы электрического тока действие магнитного поля катушки с током становится сильнее, при уменьшении — слабее.
  • Магнитное действие катушки с током может быть значительно увеличено без изменения числа витков и силы тока протекающего в катушке. Это можно сделать, вставив железный стержень (сердечник) внутрь катушки. Железо, вставленное внутрь катушки, усиливает её магнитное действие. Этот момент в приведенной выше формуле отражает переменная μr.

Обратим внимание на еще один, очень важный аспект магнитного поля, создаваемого катушкой. А именно, сходство силовых линий этого поля с силовыми линиями постоянного магнита в форме стержня. Смотрите рисунки 7а. и 7б., где оба поля показаны символически.

Сходство линий поля с полем постоянного магнита в форме бруска

Рис. 7. а, б. Сходство силовых линий полю стержневого постоянного магнита.

Электромагниты и их применение

Обратите внимание на направление электрического тока в катушке. Согласно правилу правой руки, электрический ток создает магнитное поле, силовые линии которого направлены так же, как у магнита. Таким образом, мы можем назначить магнитные полюса катушке с электрическим током, что и у магнита. Поэтому такую ​​катушку с электрическим током можно назвать электромагнитом.

Важно! Катушка с железным сердечником внутри называется электромагнитом.

Электромагниты находят бóльшее применение в технике, чем постоянные магниты. Это происходит в основном по двум причинам:

  1. Они создают более сильное магнитное поле, потому что мы можем использовать в них ферромагнитный сердечник, который в 1000-чи раз усилит магнитное поле, создаваемое электрическим током, протекающим в катушке.
  2. Вы можете управлять ими — увеличивать или уменьшать значение индукции, потому что она прямо пропорциональна электрическому току, протекающему в обмотке.

Отметим широкое применение электромагнитов, которые используются, например, в:

  • электрические машины (двигатели и генераторы);
  • громкоговорители, реле, контакторы и т.д.;
  • магнитные железные дороги;
  • устройства, использующие ядерный магнитный резонанс (МРТ). Основной частью МРТ является сверхпроводящий электромагнит, который генерирует очень сильное магнитное поле с индукцией = 3 Тесла. Внутрь этого электромагнита помещается пациент, подлежащий тестированию;
  • электромагнитные краны (сталелитейные заводы, верфи, цеха);
  • круговые ускорители (например, в ЦЕРНе, где работает сверхпроводящий электромагнит);
  • замки для ворот и дверей.

Конечно, не во всех случаях применения электромагнит похож на так называемый стержневой магнит, очень часто он напоминает подковообразный магнит. Например, электромагнит, используемый для подъема железного лома, модель которого показана на рис. 8. или электромагнит, который используется для электрического звонка (рис. 9.).

Рис. 8. Электромагнит для подъема металлолома Рис. 9. Электромагнит в схеме традиционного электрического звонка. Источник Wikipidia

Наконец, интересный факт. Можно пойти еще дальше и соединить оба конца катушки. Тогда мы получим так называемую тороидальную катушку (см. рис. 10). Это важный компонент электрических систем переменного тока; он служит для хранения энергии магнитного поля и может иметь высокую индуктивность (L).

Тороидальная катушка

Рис. 10. Тороидальная катушка. Источник: лицензия Freepik

Электромагнит – это электротехническое устройство, создающее магнитное поле при прохождении через него электрического тока. Электромагниты (ЭМ) применяются практически во всех сферах деятельности человека.

История

В 1824 году учёным Стёржденом был создан первый электромагнит. Конструкция представляла собой подковообразный железный стержень с 18 витками медной жилы. При подключении концов проводника к гальванической батарее устройство приобретало свойства магнита. При весе около двухсот граммов опытный образец электромагнита был способен притягивать металлические предметы массой до 4 кг.

Принцип действия

Чтобы понять, как работают электромагниты, надо рассмотреть их конструкцию. Простое устройство объясняет принцип действия электромагнита. При протекании электрического заряда в теле обмотки возникает излучение магнитного поля, пронизывающее магнитопровод.

Внутри металла или ферромагнита, в соответствии с законами физики, формируются микроскопические магнитные поля, именуемые доменами. Их поля под внешним воздействием обмотки выстраиваются в определённом порядке. В результате магнитные силы доменов суммируются, образуя сильное магнитное поле, сообщая магнитопроводу способность притягивать массивные металлические предметы.

Важно! Чтобы остановить электромагнитную индукцию, достаточно отключить ЭМ от источника тока. При этом сохранится частица магнитного поля. Такой эффект называют гистерезисом.

Устройство

Электромагнит представляет собой простую конструкцию, состоящую из электромагнитной катушки с металлическим или ферромагнитным сердечником. Добавочной деталью является якорь. Этот элемент используется в реле. Притягиваясь к магниту, он замыкает собой клеммы электроустройства.

Дверной звонок с ЭМ

Классификация

ЭМ различают по способам создания магнитных полей. Существуют электромагниты трёх разновидностей:

  • электромагнит переменного тока;
  • нейтральный прибор постоянного тока;
  • поляризованный ЭМ постоянного тока.

Магниты, работающие на переменном токе, меняют направление магнитного потока вместе с удвоенной частотой электротока.

Нейтральные ЭМ, подключённые к источнику постоянного тока, создают магнитные потоки, не зависящие от направления электротока.

В поляризованных устройствах ориентировка магнитного потока привязана к направлению электрического тока. Поляризованные ЭМ состоят из двух магнитов. Один из них направляет поляризующий поток магнитного поля на второй электромагнит для его отключения.

Преимущества использования электромагнитов

Главным преимуществом электрического магнита перед постоянным источником магнитного поля заключается в том, что он приводится в рабочее состояние под воздействием электрического тока. То есть, когда нужно оказать магнитное влияние на определённую часть пространства, ток включают. Это позволяет обеспечивать ритмичную работу ЭМ, что с успехом применяется в разных видах электро оборудования, приборов и устройств.

Электромагнит можно обнаружить в электрических счётчиках, сепараторных установках, трансформаторах, теле,- и аудиотехнике и других устройствах.

Мощные магниты установлены на мостовых кранах в цехах металлургических заводов и лебёдках предприятий по сбору металлолома.

Одно из первых применений ЭМ – это динамики. Звуковое устройство в своей основе имеет электромагнит, который заставляет колебаться мембрану в звуковом диапазоне.

ЭМ используются в металлоискателях для обнаружения металлосодержащих предметов под землёй, в воде и различных массивах.

Сверхпроводящий электромагнит

Сверхпроводимостью считают свойство материалов с сопротивлением, близким к нулю. Электромагниты с практически нулевым показателем сопротивления обладают сверхмощным магнитным полем. Сила магнитного воздействия может заставить парить в пространстве такие диамагнетики, как кусочки свинца и органические объекты.

Как было замечено физиками, металлы приобретают свойство сверхпроводимости при сверхнизкой температуре. Чтобы получить эффект сверхпроводимости, обмотки ЭМ помещают в сосуд Дьюара с жидким гелием, который снабжён клапаном для сброса паров вещества. Сверхпроводящие магниты применяют в медицинском оборудовании – аппаратах МРТ (магнитный резонансный томограф). В экспериментальных поездах на воздушной подушке применяются сверхпроводящие магниты.

Самый мощный электромагнит

Самые мощные магниты встроены в Большой Адронный Коллайдер. Это ускоритель заряженных частиц, предназначенный для разгона встречных потоков тяжёлых ионов свинца и протонов. Коллайдер находится на территории Европейского центра ядерных исследований недалеко от Женевы (Швейцария). В его строительстве принимали участие и проводят исследования около 10 тысяч учёных и инженеров из более, чем 100 стран мира.

Как сделать электромагнит 12в

Самый просто способ, как сделать электромагнит, – это взять обычный гвоздь, провод и батарейку. По всей длине стержня наматывают изолированный провод. Концы проводника прижимают к полюсам батарейки. Для того чтобы заряд не расходовался зря, один конец провода припаивают к положительному контакту. Другое окончание нужно делать в виде подпружиненной дуги, которую прижимают к клемме батарейки со знаком минус. На нижнем фото видно, как можно сделать электромагнит в домашних условиях.

Электромагнит своими руками

Обратите внимание! При изготовлении электромагнита с батарейкой можно использовать контактную колодку со старого устройства. Для отключения магнита будет достаточно вынуть батарейку из контактной коробки.

Расчёты

Перед тем, как начать собирать электромагнит своими руками, делают предварительный расчёт его параметров. Элементы конструкции рассчитывают отдельно для ЭМ постоянного и переменного тока.

Для постоянного тока

Перед тем, как производить расчёты, определяются с требуемой величиной магнитодвижущей силы (МДС) катушки. Параметры обмотки должны обеспечивать нужную МДС, в то же время катушка не должна перегреваться, иначе будет потерян изоляционный слой провода намотки. Исходными данными для расчёта являются напряжение в проводе электромагнитной катушки и требуемая величина магнитодвижущей силы.

Методики расчёта электромагнитов постоянного тока постоянно публикуются в сети интернета. Там же можно подобрать формулы для определения МДС, поперечного сечения сердечника и провода обмотки, его длины.

Для переменного тока

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.

Стартер с тяговым реле

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.


Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Обмотку электромагнитов изготавливают из изолированного алюминиевого или медного провода, хотя есть и сверхпроводящие электромагниты. Магнитопроводы изготавливают из магнитно-мягких материалов — обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов. Для снижения потерь на вихревые токи (токи Фуко) магнитопроводы выполняют из набора листов.

Выделяют три типа электромагнитов по способу создания магнитного потока.

Нейтральные электромагниты постоянного тока

Постоянный магнитный поток создается постоянным током в обмотке таким образом, что сила притяжения зависит только от величины и не зависит от направления тока в обмотке.

Поляризованные электромагниты постоянного тока

Присутствуют два независимых магнитных потока — поляризующий и рабочий. Первый создается рабочей (или управляющей) обмоткой. Поляризующий поток чаще всего создается постоянными магнитами, иногда дополнительными электромагнитами, и используется для обеспечения наличия притягивающей силы при выключенной рабочей обмотке. В целом действие такого магнита зависит как от величины магнитного потока, так и от направления электрического тока в рабочей обмотке.

Электромагниты переменного тока

В этих магнитах питание обмотки осуществляется от источника переменного тока, магнитный поток периодически изменяется по величине и направлению, а однонаправленная сила притяжения меняется только по величине, в результате чего сила притяжения пульсирует от нуля до максимального значения с удвоенной частотой по отношению к частоте питающего тока. Широко применяют в электротехнике начиная от бытовой техники до плит электромагнитных для станков, при магнитопорошковом методе неразрушающего контроля.

Содержание

История



В 1825 году английский инженер Уильям Стёрджен изготовил первый электромагнит, представляющий собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял. Именно эта особенность электромагнитов и позволила широко применять их в технике.

Другие классификации

Электромагниты различают также по ряду других признаков: по способу включения обмоток — с параллельными и последовательными обмотками; по характеру работы — работающие в длительном, прерывистом и кратковременном режимах; по скорости действия — быстродействующие и замедленного действия, создающие постоянное или переменное магнитное поле и т. д.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электромагнит" в других словарях:

электромагнит — электромагнит … Орфографический словарь-справочник

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, искусственный магнит, получаемый путем воздействия на железо электрического тока. Основной частью Э. является сердцевина из мягкого железа, обмотанная медной изолированной проволокой, по к рой пропускается электрический ток.… … Большая медицинская энциклопедия

ЭЛЕКТРОМАГНИТ — (от слова электричество и магнит). Мягкое, обыкновенно подковообразное железо, обмотанное изолированной медной проволокой, в котором возбуждается электромагнитная сила, проходящая по проволоке. Словарь иностранных слов, вошедших в состав русского … Словарь иностранных слов русского языка

ЭЛЕКТРОМАГНИТ — электротехническое устройство, состоящее из ферромагнитного сердечника с токопроводящей обмоткой, которая при включении в электрическую цепь намагничивает сердечник. Электромагнит используют для создания магнитных потоков в электрических машинах… … Большой Энциклопедический словарь

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, магнит, состоящий из железного сердечника, вокруг которого обмотка из изолированной проволоки. Когда по проволоке пропускают электрический ток, возникает МАГНИТНОЕ ПОЛЕ, исчезающее при отключении тока. Это позволяет включать и… … Научно-технический энциклопедический словарь

электромагнит — [IEV number 151 14 08] электромагнит Намагничивающее и размагничивающее устройство в виде П образного ферромагнитного сердечника, на который намотаны одна, две или более обмоток, включенных согласованно, в котором магнитное поле возникает и… … Справочник технического переводчика

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, электротехническое устройство, состоящее из ферромагнитного сердечника (например, из электротехнической стали) с токопроводящей обмоткой, которая при включении в электрическую цепь намагничивает сердечник. Используется для создания … Современная энциклопедия

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, электромагнита, муж. (физ.). Кусок железа или стали, обмотанный изолированной проволокой и намагничиваемый пропусканием через проволоку электрического тока. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ЭЛЕКТРОМАГНИТ — ЭЛЕКТРОМАГНИТ, а, м. Устройство для получения магнитного поля при помощи электрического тока, обычно в виде стального или железного сердечника с проволочной обмоткой, искусственный магнит. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 … Толковый словарь Ожегова

ЭЛЕКТРОМАГНИТ — (Electromagnet) железный стержень, намагничиваемый током, проходящим через проволочную спираль (соленоид), которая надета на стержень. В зависимости от формы стержня различают: стержневой Э., подковообразный Э. Э. широко применяются во всех… … Морской словарь

ЭЛЕКТРОМАГНИТ — катушка из изолированной проволоки с железным сердечником внутри, создающая при прохождении по ней тока магнитное поле. Сердечник служит для усиления магнитного поля, т. к. железо значительно лучше проводит магнитные силовые линии, чем воздух… … Технический железнодорожный словарь

Читайте также: