Почему турбины для электростанций делают по технологии единичного производства а телевизоры по

Обновлено: 20.05.2024

лише де-не-де спалахували і мерехтливо миготіли сліпенькі вогники.

де-не-де по хатах ясне світло сяє.

его зовут леший то же самое что и в описаии

пример выполенной работы

Наблюдения, рисунки, выводы

1. Рассмотрите раковину беззубки. Найдите передний широкий, округлый) и задний (узкий) края, спинную и брюшную стороны. Какую окраску имеет наружная сторона раковины беззубки?

Наружная сторона раковины темно-коричневая, видны кольца.

2. Обратите внимание на выступающую наружную часть раковины (верхушку) и на окружающие её слои годовых приростов. Установите по числу годовых слоев возраст раковины

3. Соскребите пинцетом в каком -либо месте раковины наружный (окрашенный) слой. Какой цвет имеет обнажившийся фарфоровый слой?

4. Рассмотрите внутреннюю сторону створки раковины. Чем отличается внутренний слой от других слоев раковины?

Есть перламутровый блеск. Ровная гладкая поверхность

5. Возьмите в руку двустворчатую раковину беззубки, сблизьте её створки, а затем слабо нажмите пальцем. Найдите соединяющую створки упругую спинную связку, действующую наподобие пружины

Рассмотрел связку. Она очень упругая

Зарисуйте раковину беззубки

Лабораторная работа Строение раковин моллюсков Цел

ВЫВОД: Овальная раковина беззубки имеет длину около 10 см. Передний конец раковины закруглен, задний слегка заострен. Раковина состоит из двух сим­метричных створок — правой и левой. Моллюсков, обла­дающих раковиной из двух половинок-створок, как у без­зубки, называют двустворчатыми. Обе створки при помощи упругой гибкой связки и двух мускулов-замыкателей со­единены между собой на спинной стороне. На брюшной стороне они могут раскрываться, и в образующуюся щель высовывается нога моллюска. Головы у беззубки нет. Нога у беззубки, в отличие от прудовика, не с широкой плоской подошвой, а в виде мускулистого, направленного вперед клина. При передвижении беззубка выдвигает ногу вперед и закрепляется ею в грунте, а затем подтягивает тело. Таким образом беззубка делает как бы маленькие шаги, по 1—2 см каждый, передвигаясь за час всего на 20—30 см. Потревоженная беззубка втягивает ногу в раковину и плотно замыкает створки при помощи мышц-замыкателей. Когда мышцы расслаблены, створки снизу раздвигаются под действием пружинящей связки.

В настоящее время в России реализуется масштабная программа модернизации тепловых электростанций. Она рассчитана на 2022-2031 годы и оценивается в 1,9 трлн руб. Инвестиции позволят обновить более 40 ГВт энергомощностей. При этом программа изначально предполагает использование преимущественно российского оборудования. Однако проблема в том, что ключевой элемент современной тепловой электростанции - газовая турбина - на сегодняшний день в России серийно не производится. Оборудование приходилось закупать либо за рубежом, либо производить по иностранным технологиям. Чем это грозит "энергетической безопасности" было наглядно продемонстрировано, когда из-за поставок турбин для строящихся ТЭЦ в Крыму "Силовые машины" попали под санкции.

Фото: ПАО "ОДК-Сатурн"

Нельзя сказать, что отечественное энергомашиностроение не бьется над решением задачи по производству газовых турбин. Например, "Силовые машины" обсуждают возможности локализации турбин "Siemens" средней и большой мощности. "Интер РАО" и "Газпромэнергохолдинг" так же обсуждают создание СП с GE и Siemens. Однако на сегодняшний день "в железе" реализован только агрегат ГТД-110М, созданный в рамках совместного проекта Группы РОСНАНО, ПАО "ОДК-Сатурн" и "Интер РАО".

"Не могу не отметить, опыт создания турбины ГТД-110М очень сложный, имеющий свою непростую историю", - подчеркнул Олег Токарев. Инжиниринговый центр "Газотурбинные технологии", занимающийся модернизацией этой турбины с 2014 года. За это время совместно с производителем турбины - ПАО "ОДК-Сатурн" (входит в ОДК), были устранены конструктивные недостатки и повысилась надежность технологических характеристик проекта. Мощность турбины выросла со 110 до 115 МВ, с 35,5% до 37% увеличился КПД установки.

Олег Токарев. Фото: Youtube

Новая турбина уже прошла два этапа испытаний: на стенде и опытно-промышленную эксплуатацию в серийной ячейке блока Ивановских ПГУ. По словам Олега Токарева, сейчас ГТД-110М уже отработала необходимые 3000 часов. "Сейчас мы рассматриваем вопрос организации серийного производства этой турбины, - отметил он. - Для этого мы создаем широкий пул производителей в рамках кооперации. База, мы надеемся, будет сосредоточена в рамках "Ростех", но с привлечением множества как государственных, так и частных компаний. В этой кооперации мы видим залог успеха. Нам необходимо произвести еще два двигателя для того, чтобы три двигателя отработали длительный цикл ресурсных испытаний. После этого мы можем переходить к серийному выпуску".

Сейчас ГТД-110М проходит плановый осмотр после испытаний. И если существенных дефект не обнаружат, эффективность и безопасность установки будут подтверждены, то инвестпроект по модернизации можно будет считать завершенным.

"Создание собственных компетенций в турбиностроении выведет нашу страну на уровень высокотехнологической державы", - подчеркнул Олег Токарев.

Паровые турбины

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество.

Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт.

В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

Конденсационные паровые турбины

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.

Теплофикационные паровые турбины

Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин — тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением.

У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.

В турбинах с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.

У турбин с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Конденсационные паровые турбины

Схема работы теплофикационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины (3). При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом (4) электрического генератора (5). В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы, и из них пар направляется в подогреватели (6) сетевой воды (7). Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть тепла, полученного в котле используется для подогрева сетевой воды.

Паровые турбины специального назначения

Паровые турбины специального назначения обычно работают на технологическом тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).

  • Турбины мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющих давление немного выше атмосферного.
  • Турбины двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней.
  • Предвключённые турбины представляют собой агрегаты с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих турбин направляют в другие с более низким начальным давлением пара. Необходимость в предвключённых турбинах возникает при модернизации электростанций, связанной с установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции турбоагрегаты.
  • Также к турбинам специального назначения относятся и приводные турбины различных агрегатов, требующих высокой мощности привода. Например, питательные насосы мощных энергоблоков электростанций, нагнетатели и компрессоры газокомпрессорных станций и т. д.

Обычно стационарные паровые турбины имеют нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды. Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.

60 лет надежной службы, 6600 тонн пара в час — это не цифры из фантастического романа, а параметры новой тихоходной турбины, которую создают на известном каждому горожанину Ленинградском Металлическом заводе (ЛМЗ) в Петербурге. Разбираемся, как устроено производство, и чем новые турбины отличаются от традиционных для нашей энергетики.

Как устроена атомная электростанция

На атомной электростанции — или попросту АЭС — электричество вырабатывается при использовании энергии, которая образуется в ходе контролируемой ядерной реакции. Топливом является обогащенный уран.

Упрощенно процесс получения электроэнергии на АЭС организован так. При ядерной реакции выделяется тепло. С помощью насоса теплоноситель (вода, жидкий металл и др.) прокачивается через реактор, где нагревается за счет этого тепла. Теплоноситель отдает тепло воде второго контура, испаряет ее в парогенераторе, а затем, охладившись, вновь поступает в реактор. Выработанный в генераторе пар под давлением направляется в паровую турбину и подается на лопатки ее ротора. Это приводит роторы в движение, и они вращаются. В одной турбине может быть несколько соединенных в единый валопровод роторов, который, в свою очередь, приводит в движение ротор турбогенератора. На этом этапе механическая энергия движения превращается в электрическую. Отработавший пар конденсируется и в виде питательной воды вновь подается в парогенератор.

На два фронта

По частоте вращения паровые турбины для мощных блоков АЭС бывают двух видов — быстроходные и тихоходные (в чем разница, объясним чуть ниже). Традиционно Ленинградский Металлический завод производил быстроходные агрегаты различной мощности для ТЭС и АЭС.


Историческая справка

Мощности паровых турбин росли, и в конце 1970-х годов было принято решение создать на базе ЛМЗ инновационную и менее металлоёмкую быстроходную машину. В 1982 году первый образец мощностью 1000 МВт был собран. Сегодня быстроходными турбинами ЛМЗ укомплектованы более 30 энергоблоков атомных электростанций в России, странах бывшего СССР, а также по всему миру.

Историческая справка

Мощности паровых турбин росли, и в конце 1970-х годов было принято решение создать на базе ЛМЗ инновационную и менее металлоёмкую быстроходную машину. В 1982 году первый образец мощностью 1000 МВт был собран. Сегодня быстроходными турбинами ЛМЗ укомплектованы более 30 энергоблоков атомных электростанций в России, странах бывшего СССР, а также по всему миру.

На рубеже XX-XXI веков конъюнктура рынка энергооборудования сложилась таким образом, что теперь зарубежные турбостроительные фирмы изготавливают, главным образом, тихоходные турбины для АЭС. В этой конкурентной среде сделать шаг в сторону освоения производства нового вида турбин для российского производителя вполне логично.

Для вновь создаваемых мощных блоков 1200 и более МВт Ленинградский Металлический завод сможет предложить энергетикам всего мира — в зависимости от их предпочтений и условий водоснабжения площадок АЭС — и быстроходные, и тихоходные турбоагрегаты, — отмечают в компании.

Читайте также: