Схема импульсного блока питания телевизора хитачи смт 2198

Обновлено: 16.05.2024

Ремонт блока питания телевизора является одной из самых сложных задач для электронного мастера. Если вы разберётесь, как работают источники питания или импульсные БП, вам будет легче устранять любые проблемы в других типах схем, таких как цвет, вертикаль, аудио, высокое напряжение и т.д.

Как работает питание в телевизоре? Какие главные ошибки пользователей, которые приводят к выходу из строя блока питания? Почему телевизоры вдруг перестают включаться? Давайте будем разбираться.


Как работает и выглядит БП, его компоненты

До 1970 годов, большинство бытовой электроники использовало источник питания типа силовой трансформатор, или выпрямитель, или конденсатор фильтра для преобразования линии переменного тока в различные уровни напряжения, необходимые для внутренних цепей. Многие из них даже не имели регулирования.

В наше время все телевизоры, мониторы, ПК, ноутбуки, видеокамеры, принтеры, факсы и даже определённое аудиооборудование используют импульсные источники питания.

Источники питания с коммутацией каналов или импульсные БП (SMPS) – это электронная схема, которая преобразует энергию используя:

  • Переключающие устройства, которые включаются и выключаются на высоких частотах;
  • Компоненты хранения, такие как катушки индуктивности или конденсаторы, для подачи питания, когда переключающее устройство находится в непроводящем состоянии.

Импульсные источники питания имеют высокую эффективность и широко используются в различном электронном чувствительном оборудовании, которое требует стабильности и эффективности электроснабжения.


Импульсные БП классифицируют по типу входных и выходных напряжений. Вот четыре основные категории:

где AC – это переменный ток, а DC – это постоянный ток.

В постоянном токе электрический заряд течёт только в одном направлении. Электрический заряд переменного тока периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на обратное, поскольку ток меняет направление.

Большая часть современной цифровой электроники использует постоянный ток. Тем не менее важно понимать некоторые концепции переменного тока. Большинство наших домов подключены к сети переменного тока, поэтому, если вы планируете подключить к розетке электронное устройство, вам потребуется преобразовать переменный ток в постоянный.

Переменный ток имеет свои неоспоримо полезные свойства, такие как возможность преобразования уровней напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства передачи электроэнергии на большие расстояния.


Теперь давайте поймём принцип работы разных блоков питания. Обычный (линейный) источник питания использует трансформатор для изменения напряжения до необходимого уровня. Затем схема изменяет это на постоянный ток, гарантирует, что он чист и остаётся на должном уровне (выпрямление, фильтрация и регулирование). Проблема этой конструкции заключается в том, что приборы-трансформаторы частоты линии большие, тяжёлые и дорогие.

Ключом к работе импульсного источника питания является работа трансформатора на гораздо более высокой частоте, чаще всего за пределами слышимых частот. На более высоких частотах железный сердечник трансформатора больше не нужен, поэтому его конструкция более компактная, лёгкая и потенциально более стабильная, чем старый линейный дизайн.

Но чтобы совсем уж не углубляться в технические дебри, давайте перейдём к более ощутимым параметрам. Как внешне выглядит импульсный блок питания телевизора и из каких компонентов состоит его конструкция?

В современных моделях телевизоров блоки питания располагаются на системных платах, причём их там несколько, а точнее, чаще всего три:

  • Дежурный БП;
  • Блок инвертора;
  • Блок PFC.

Все эти компоненты имеют жёлто-чёрный окрас.

Дежурный БП – это тот прибор, который отвечает за свечение индикатора на передней панели телеприёмника. Он всегда поддерживает минимальное напряжение в 5 вольт, чтобы пользователь смог включить технику с пульта дистанционного управления.

Блок инвертора – этот системный компонент отвечает за подачу напряжения на инверторный преобразователь. Инверторы выдают довольно высокий уровень напряжения для питания (от 500 до 700 вольт) и освещают ваш ЖК-экран. Неисправная или повреждённая плата инвертора может вызвать искажение изображения, затемнить экран или помешать его включению. Если поломка случилась в блоке питания инвертора, то ваш телевизор сразу после включения будет переходить в дежурный режим.


Блок PFC – это компонент, отвечающий за коррекцию коэффициента мощности – отношения между кВт и кВА, потребляемых электрической нагрузкой, где кВт – это фактическая (активная) мощность нагрузки, а кВА – полная (номинальная) потребляемая мощность нагрузки, которая не вся используется в качестве эффективной энергии. Проще говоря, это мера того, насколько эффективно ток нагрузки преобразуется в полезную рабочую мощность.

При проектировании электронного блока питания с питанием от переменного тока требуется строго соблюдать ограничения PF и требования рабочих стандартов. Обычно это достигается введением схемы активной или пассивной коррекции коэффициента мощности (PFC) внутри источника питания.


Как видно из описания, блок питания телевизора – это не просто отдельный прибор, который можно легко заменить (хотя есть и такие модели телевизоров). Это целый узел, который состоит из нескольких компонентов, каждый из которых отвечает за своё направление в обеспечении приёмника напряжением определённой мощности.

Основные неисправности блока питания

Любая неисправность блока питания телевизора будет влиять на работоспособность ТВ. И самые частые поломки телевизоров связаны именно с этой деталью. Причин тут может быть несколько:

  • Неправильные условия эксплуатации;
  • Нарушения климатических режимов;
  • Недобросовестная сборка техники;
  • Дилетантское вмешательство.

Первое, чего не любит эта техника – это резких перепадов температур и влажности. Если вы купили телевизор зимой и занесли его в радикально тёплое помещение, нельзя его тут же включать в сеть и приступать к просмотру телевизионных каналов. Внутри оборудования может образоваться конденсат, который может повлечь за собой выход из строя важнейших компонентов техники.


Многие поломки происходят в дешёвых телевизорах из-за экономии производителя на качестве деталей, микросхем и сборке. Также очень часто телевизоры ломаются после непрофессионального ремонта: разобрать смогли, а собрать всё правильно не получилось.

Чтобы позволить себе самостоятельный ремонт совсем недешёвой техники, вы должны иметь базовые технические знания, практические умения и необходимый набор инструментов. Не экономьте на ремонте, если не имеете опыта, ведь вы можете легко превратить простую поломку (например, плохие соединения пайки) в дорогостоящий ремонт.

Чаще всего блоки питания выходят из строя по таким причинам:

  • Перегорел предохранительный элемент (после грозы, например);
  • Поломка в ключевых компонентах;
  • Не хватает напряжения, чтобы телевизор запустился;
  • Перегорел транзистор;
  • Неправильное выходное напряжение в цепях.

Но не всё так страшно, как выглядит на первый взгляд. Найти поломку можно и самому, если следовать чёткому алгоритму поиска.

Алгоритм поиска поломки и её ремонт

Ремонт телевизоров и другого бытового и промышленного оборудования может быть выгодным и экономично обоснованным, но только при условии, что вы обладаете минимальной технической грамотностью и хорошо знакомы со всеми соответствующими мерами предосторожности. Не каждый любитель сможет отремонтировать блок питания. Это совсем непростое и небезопасное занятие.

Но если вы всё-таки чувствуете в себе уверенность и желание разобраться в причинах неработоспособности своего телевизора, в частности, провести проверку его блока питания, ты мы предложим вам выполнить такую последовательность действий:

  1. Выключите телеприёмник из сети и проверьте саму розетку: проблема может быть в нестабильном напряжении сети либо в неисправности самой розетки (или удлинителя).
  2. Разрядите высоковольтный конденсатор на плате, чтобы не было короткого замыкания в дальнейшем (его можно просто замкнуть изолирующей отвёрткой, тестером или поднести к нему лампочку на пару секунд).
  3. Если с питанием в системе всё хорошо, то следующим шагом будет прозвон дежурного источника питания, в котором, как писалось ранее, напряжение должно поддерживаться на уровне 5 вольт. Если меньше – нужно будет проверять конденсаторы.
  4. Теперь проверьте предохранитель – часто из-за временной перегрузки или вследствие замыкания в цепях сетевого напряжения эта деталь может просто перегореть.
  5. Теперь демонтируйте корпус телевизора и достаньте системную плату.


Действительной причиной сбоя работы предохранителей могут быть скачки напряжения, резкое отключение, удары молнии или случайный сбой в электросети. Важно! Проводить замену перегоревшего предохранителя можно только на деталь того же номинала, который рекомендует производитель электронного устройства!

После этого положите плату на ровную поверхность и проведите визуальный осмотр:

  • Проверьте саму плату на наличие кольцевых трещин;
  • Специальным прибором для измерения напряжения (тестером) проверьте каждый резистор, транзистор, электролитический конденсатор, диод;
  • Внимательно осмотрите все паяльные области, непрерывность травли дорожек, имеются ли пробои, разрывы и т.д.

Если вы заметили потемневший или треснувший резистор – его нужно будет заменить. Сопротивление этих элементов со значениями в диапазоне от 0 до ∞ – это тоже признак их неработоспособности. Если на плате есть конденсаторы со вздутой верхней крышкой – их также придётся заменить.

Работу кремниевых диодов можно проверить двумя способами:

  • Выпаять из платы и проверить напряжение тестером (в режиме с пределом в 20 кОм): в прямом направлении значение должно быть 3-6 кОм, в обратном направлении – ∞;
  • Запаянные диоды проверяют мультиметром в режиме измерения падения напряжения – значение должно быть до 0,7 V (если напряжение 0 или близко к тому, то элемент всё-таки придётся выпаивать и проверять первым способом).

Биполярные транзисторы нужно проверить дважды: и в прямом, и в обратном направлениях.


Для проверки питающего напряжения импульсного БП сделайте следующее:

  1. Возьмите схему и 2 лампочки по 100 Ватт.
  2. Определите, где находится выходной каскад строчной развёртки.
  3. Отключите его и вместо него подключите лампочку.
  4. Найдите во вторичных цепях конденсатор фильтра питания и к нему подсоедините вторую лампочку, что создаст имитацию нагрузки.

Если лампочка загорелась, это говорит о том, что в блоке питания есть проблемы: во входных цепях, выпрямителе, сетевом, силовом конденсаторе или др. А вот если лампочка загорается, тухнет, а потом очень сабо светит, то блок питания в норме. А схема будет нужна для того, чтобы определить, где именно образовался разрыв.

Если питание отключено, и предохранитель не перегорел – то, скорее всего, неисправная цепь запуска (открытые пусковые резисторы), открытые плавкие резисторы (из-за коротких полупроводников), неисправные компоненты контроллера.

Диагностика проблем в импульсных источниках питания иногда усложняется из-за взаимозависимости компонентов, которые должны функционировать должным образом, чтобы любая часть источника питания чётко выполняла свою часть рабочего процесса.


В зависимости от конструкции SMPS может быть защищён или не защищён от перегрузки: одна модель может катастрофически выйти из строя при большой нагрузке, даже если имеется защитный предохранитель от короткого замыкания. В другом блоке питания могут выйти из строя устройства коммуникации (часто это транзисторы на 800 В).

Кроме того, такое оборудование может дать сбой при восстановлении питания после отключения электроэнергии. Этот момент является очень напряжённым: любой скачок мощности нежелателен. (Некоторые конструкции учитывают это и ограничивают скачок при включении).

Однако причина многих проблем сразу очевидна и имеет простые исправления – самым слабым звеном в их составе являются перегоревшие прерыватели транзистора или высохший конденсатор основного фильтра. Не думайте, что все проблемы, связанные с источником питания, всегда будут сложными и запутанными. В большинстве случаев нет.

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Принципиальная схема импульсного блока питания

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.


На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

ремонт компьютерного блока питания

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.


Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Учимся ремонтировать кинескопные, LED и ЖК телевизоры вместе.

21.12.2015 Lega95 0 Комментариев

Thomson 21DCH61KH

Всем привет. Сегодня расскажу о ремонте блока питания телевизора Thomson 21DCH61KH (шасси ETC009). Данный телевизор, при включении в сеть издавал щелчок от петли размагничивания, и на этом признаки жизни заканчивались. Все выходные напряжения из блока питания отсутствовали.

Визуальный осмотр.

Диагностику телевизора как всегда начал с разборки, и внешнего осмотра платы. Нашел пару кольцевых трещин у видео входа, и на ТДКС, которые я сразу устранил. Больше ничего подозрительного я не обнаружил.

Ремонт блока питания.

Сначала решил замерять напряжения на сетевом электролите C806, которое составило порядка 292в, что в пределах нормы. Отключив питание от телевизора, и разрядив конденсатор C806, первым делом решил проверить электролит, в цепи питания шим контроллера IC801 TDA16846-2P 47мкф/25в. Он оказался с слегка завышенным ESR, а именно 3,5 Ом, что могло давать подсадку напряжения на шим.

ESR конденсатора 47мкф на 25в

ESR конденсатора 47мкф на 25в

Конденсатор установил новый, после чего решил попробовать включить телевизор. Запуска так и не последовало. Напряжение питания на 14 ноге IC801 плавало от 11 до 14в, но на затворе Q801 напряжение полностью отсутствовало. Проверив все остальные элементы в блоке питания, а именно диоды и резисторы, пришел к выводу, что неисправна IC801 TDA16846-2P.

Замена IC801 TDA16846-2P на TDA16846 P

Микросхемы в корпусе DIP-14 обычно стараюсь устанавливать на панельку, чтобы при необходимости не паять их снова. Я уже писал, что выпаиваю микросхемы с помощью оплетки, и этот раз не стал исключением. Смазав место пайки флюсом, начал потихоньку собирать олово на оплетку.

vupayka

Выпаивание микросхемы TDA16846-2P оплеткой

vupayka2

Продолжение процесса выпаивания

Результат выпаивания после чистки спиртом

Результат выпаивания после чистки спиртом

Вскоре ножки микросхемы полностью освободились, и микросхема спокойно выпала. Далее плату очистил спиртом, и на место микросхемы я установил панельку.

Установка панельки под микросхему TDA16846-2P

Установка панельки под микросхему TDA16846-2P

Уже запаянная панелька

Уже запаянная панелька.

TDA16846-2P в наличии у меня не нашлось, но оказался ее полный аналог TDA16846 P, который я и установил на место сгоревшей.

Запуск телевизора

Во избежании форс-мажорных ситуаций, вытянул предохранитель, и на его место запаял лампу накаливания 60 Вт. Это сохранит силовые элементы блока питания, в случае, если я что-то упустил, и БП пойдет в разнос.

В момент включения лампа на секунду загорелась в полную мощность (в этот момент происходил заряд электролита C806), после чего лампа погасла, и БП запустился. Напряжение +В составило 112,7.

напряжение +B

Убрав лампу, и установив предохранитель, телевизор запустился. Извиняюсь сразу что не сфотографировал телевизор уже в работающем состоянии, так как меня отвлекли, и я потом просто забыл это сделать.

Спасибо за внимание.

Весь инструмент и расходники, которые я использую в ремонтах находится здесь. Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Все современные электрические приборы, использующие цифровые технологии, питаются от встроенных блоков, работающих в импульсном режиме.

Они снабжаются защитами, имеют качественный монтаж, но из-за скачков напряжения в сети или ошибок человека все же выходят из строя: тогда дорогой бытовой помощник перестает работать.

Чтобы вы могли с минимальными потерями выйти из этой ситуации, я подробно объясняю все про импульсные блоки питания, ремонт своими руками их неисправностей.

Вначале предлагаю немного отойти от темы, чтобы вспомнить подсобный справочный материал. Если он вам не нужен, то сразу переходите к вопросам ремонта.

Импульсные блоки питания — как работают: краткий обзор схем

Структурная схема импульсного блока питания поясняется мнемоническими символами формы напряжения над каждым его составным блоком, а связи взаимодействия обозначены стрелками.

Структурная схема импульсного блока питания

Принципиальную схему удобно представлять таким видом.

Схема импульсного блока питания

Монтажная плата одного из устройств с расположением деталей показана на фотографии ниже с моими комментариями.

Импульсный блок питания

Естественно, что это только частный случай, который, скорее всего не совпадет с вашим ИБП. Здесь я преследую простую цель — напомнить принципы взаимодействия составных частей блока.

Если вам необходимо более подробно ознакомиться с этими вопросами, то читайте специально написанную статью.

Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП

На всех существующих схемах импульсных блоков питания рядом с первичными цепями 220 вольт расположены вторичные — выходного напряжения. Их все необходимо измерить и оценить.

Правила безопасности с электрическим током требуют не допускать необученных людей к работам под напряжением. Поэтому обязательно ознакомьтесь с ними заранее.

Я же заострю ваше внимание только на трех вопросах:

  1. Работайте под напряжением только одной рукой: вторую засуньте в карман и не доставайте — сразу снизите риск попадания под действие электрического тока.
  2. Накопительные конденсаторы длительно хранят запасенную энергию даже при отключенном напряжении, требуют осторожного обращения.
  3. Подключайте импульсный блок питания для проверок только через разделительный трансформатор.

Электрическое сопротивление человеческого тела очень низкое: наш организм состоит из жидкостей. Если работать под напряжением двумя руками, то существует большая вероятность создать путь для прохождения тока короткого замыкания через свое тело.

А ведь несколько десятков миллиампер уже могут вызвать фибрилляцию сердца.

Фибрилляция сердца

Мгновенный разряд конденсатора тоже способен причинить большой вред организму. Не советую испытывать судьбу: проверять на себе работу электрошокера.

Накопленный емкостной заряд следует предварительно снимать. Причем делать это не простой закороткой его выводов пинцетом или перемычкой, а резистивным сопротивлением в десятки килоом. Иначе могут возникнуть большие токи, которые элементарно повредят исправный конденсатор.

Разделительный трансформатор отделяет подключенный к нему потребитель от цепей питающей подстанции. Его применение исключает стекание тока через тело человека по контуру земли.

Система заземления TN-C

Величина тока короткого замыкания во вторичной цепи 220 разделительного трансформатора ограничивается мощностью, которую может передавать его магнитопровод.

Разделительный трансформатор

Эта схема подключения допускает касание одной рукой (не двумя) любого места вторичной обмотки трансформатора или подключенного к ней источника бесперебойного питания.

Подключать ИБП к вторичной цепи разделительного трансформатора рекомендую через лампу накаливания.

Ее же с мощностью 60-100 ватт допустимо использовать в качестве токоограничивающей нагрузки при ремонте блока без разделительного трансформатора. Она уменьшит аварийный ток, может спасти транзистор от выгорания.

Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих

Профессиональный электрик всегда начинает работу с подготовки рабочего места, инструмента и оценки рисков, которые необходимо предотвратить.

Следует хорошо представлять, что ремонтировать импульсный блок питания своими руками — значит работать под напряжением в действующих цепях.

Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы

Сейчас производители электротехнического оборудования хранят в тайне свои профессиональные секреты: схемы ИБП в свободном доступе нет. Мы же собрались делать ремонт своими руками, а не в специализированном сервисе.

Поступаем следующим образом:

  1. Вскрываем корпус и осматриваем электронную плату.
  2. Находим мощный транзистор (выходной ключ) и микросхему (ШИМ-контроллер). Иногда они могут быть объединены общим корпусом.
  3. Записываем маркировку и по ней ищем в справочниках или через интернет полное описание (data sheet).
  4. Изучаем по найденной документации выводы микросхемы, способы ее подключения и сравниваем полученные сведения с реальной конструкцией.

На малогабаритных микросхемах полная маркировка не всегда помещается. Тогда производители делают кодовое обозначение из нескольких букв и цифр. По нему сложнее искать информацию, придется упорнее потрудиться.

Технологию поверхностного монтажа печатных плат и способы маркировки деталей хорошо объясняет в своем видеоролике Влад ЩЧ. Рекомендую посмотреть.

Без измерительного электрического инструмента отремонтировать ИБП вряд ли получится. Можно обойтись старыми стрелочными приборами — тестерами, как мой Ц4324.

Советский тестер

Они позволяют измерять большинство электрических параметров с достаточным для ремонта классом точности, но требуют повышенного внимания и выполнения дополнительных вычислений.

Сейчас намного удобнее использовать для замеров цифровой мультиметр.

Устройство мультиметра

Все правила обращения с ним для новичков я очень подробно объяснил в специально опубликованной статье. Надеюсь, что она будет вам полезна.

Большую помощь в поиске неисправностей окажет осциллограф. Он позволяет просмотреть осциллограммы напряжений практически каждого узла ИБП.

Частота напряжения

По их виду и величинам довольно просто оценивать работоспособность каждого электронного элемента в составе схемы. Для снятия замеров подойдет любая модель: старая аналоговая или современная цифровая.

Но, если осциллографа нет, то отчаиваться не стоит. В подавляющем большинстве случаев можно обойтись цифровым мультиметром или стрелочным тестером.

Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов

Неисправности внутри ИБП можно разделить на две категории:

  1. Явное выгорание с обугливанием деталей, дорожек, взрывы конденсаторов.
  2. Тихая потеря работоспособности без проявления внешних повреждений.

Алгоритм ремонта импульсного блока питания состоит из двух последовательных этапов: вначале проводят первичные проверки без подачи напряжения, а затем — замеряют величины электрических характеристик.

Первый этап ремонта предусматривает обязательное выполнение шагов №1 и 2 только с отключенным питанием.

Шаг №1: внешний и внутренний осмотр

Первоначально вам придется вскрыть корпус и внимательно осмотреть его содержимое. Все, что вызывает сомнения, необходимо тщательно проверить.

Неисправности блока питания компьютера

Первый тип повреждения таит в себе ту опасность, что определить маркировку сгоревших деталей бывает сложно, а то и невозможно. На этом этапе ремонт может остановиться.

Сгоревший транзистор

Шаг №2: проверка входного напряжения

Во втором случае поиск места дефекта начинают с проверки наличия цепей питания 220 вольт. Часто возникает повреждение сетевого шнура или перегорание предохранителя.

Плавкая вставка предохранителя

Плавкая вставка предохранителя обычно перегорает от пробоя полупроводникового перехода диодов выпрямительного моста, транзисторных ключей или дефектов блока, управляющего дежурным режимом.

Все это надо проверить мультиметром: его переводят в режим омметра и замеряют состояние электрического сопротивления указанных цепочек, ищут обрыв, который необходимо устранить.

Сразу скажу, что не стоит успокаиваться, если обнаружили сгоревший предохранитель: он так просто не выходит из строя. Явно в цепи ИБП возникло короткое замыкание или перегруз: придется искать дополнительно поврежденные детали.

Если повреждений нет, то импульсный блок питания размещают на диэлектрическом основании стола и подают на него 220 вольт.

Шаг №3: проверка состояния сетевого фильтра и выпрямителя

Работоспособность этой схемы следует определять вольтметром в режиме измерения переменного напряжения. Обращайте внимание на величину его сигнала на входе и выходе. У исправного прибора амплитуда гармоник практически не должна отличаться.

Качество фильтрации посторонних помех хорошо показывает осциллограф, но если он отсутствует, то это не так уж и страшно. Его замеры могут понадобиться в исключительных случаях, их допустимо пропустить.

Также проверяется работа выпрямителя: вольтметр для замера выходного напряжения переключают в режим цепей постоянного тока. Его концы устанавливают на ножки электролитического конденсатора или их дорожки.

Замер напряжения на конденсаторе

Когда напряжение на выходе из фильтра или выпрямителя не укладывается в норму, то придется проверять исправность всех деталей, которые входят в его схему.

В первую очередь обращайте внимание на электролитические конденсаторы, которые при излишнем нагреве усыхают, теряя емкость, а то и взрываются. Сразу оцените правильность их геометрической формы.

Вздутый конденсатор

Любое малейшее искажение, особенно вздутый конденсатор — признак внутреннего повреждения. Если геометрия не нарушена, то приступают к электрическим замерам.

Стрелочным тестером это можно сделать двумя способами:

  1. Конденсатор разряжают. Прибор переводят в режим омметра и его внутренним источником заряжают емкость: просто щупы ставят на ножки и выдерживают небольшое время.

Затем цешку переводят в режим вольтметра и наблюдают за разрядом емкости. Способ приблизительный, оценочный, но довольно быстрый.

  • Более точно, но сложнее оценить конденсатор можно измерением его емкостного сопротивления. Через него пропускают синусоидальный ток, оценивают замерами его величину и падение напряжения. По закону Ома вычисляют емкостное сопротивление Хс. По нему рассчитывают емкость конденсатора C.

Конденсатор на переменном токе

Цифровой мультиметр позволяет просто определить величину емкости обычным замером. Внутри него уже есть встроенный генератор, а процессы измерения тока с напряжением, как и вычисления, автоматизированы.

Во вторую очередь анализируйте исправность диодов. Все они, включая силовые, должны проводить ток только в одну сторону. Их работоспособность оценивают мультиметром в режиме омметра или прозвонки.

Как работает диод

Шаг №4: проверка работы инвертора

Учитываем, что схема построения каждого высокочастотного генератора собирается не только из различных деталей, но и с большим разнообразием конструкторских решений.

Часто генератор объединен в составе электронной платы с высокочастотным трансформатором, а также выходным выпрямителем и фильтром. Мы будем исходить из того, что точной схемы построения ИБП у нас нет: проверяем ее по внешним, косвенным признакам.

Работаем мультиметром в режиме вольтметра: последовательно оцениваем амплитуды напряжений на разных точках инверторной схемы. Учитываем, что прибор показывает действующие величины, а не максимальные, амплитудные.

Осциллограф с делителем напряжений здесь более уместен: он покажет еще и форму каждого сигнала, что может значительно облегчить поиск неисправности.

Шаг №5: проверка выходных напряжений

Обращаю внимание, что многие ИБП, особенно компьютерные, на выходе имеют несколько цепей, отличающихся по величине напряжения, например, 12, 5 и 3,3 вольта. Причем они могут собираться на разные нагрузки.

Разъемы компьютерного блока питания

Их все надо проверить электрическими замерами. Чтобы запустить компьютерный блок в работу необходимо закоротить управляющий сигнал запуска БП PS_On на нулевой провод черного цвета.

Подача напряжения питания на компьютерный ИБП в режиме холостого хода вредна для электронной схемы. Сокращается ресурс его работы.

Для проверки под напряжением рекомендуется собрать простую схему из обычных резисторов. Желательно их выбирать большой мощности и ставить на радиаторы или делать принудительный обдув на время проверки.

Блок нагрузки

Если в качестве нагрузки использовать рабочие блоки компьютера, например CD привод, HDD или материнскую плату, как иногда рекомендуют отдельные мастера, то велика вероятность того, что не устраненная еще неисправность блока питания повредит и их.

Шаг №6: проверка работы защиты от перегрузок

Операция проводится после проверки качества выходных напряжений на всех участках схемы.

Импульсные блоки питания для сложных электронных устройств (мониторы, цифровые телевизоры и подобная техника) имеют в своем составе токовую защиту. Она снимает питание с подключенной цепи при возникновении в ней опасных токов, превышающих номинальную величину.

Эта защита работает от встроенного датчика тока, сигнал с которого о перегрузке подается на управляющую микросхему. Она, в свою очередь, отключает питание выходным силовым контактом с создавшегося аварийного режима.

Тема эта очень большая, обширная. Принципы построения токовой защиты в импульсных блоках питания доступно объясняет владелец видеоролика Ростислав Михайлов.

Шаг №7: проверка схемы стабилизации выходных напряжений

На этом заключительном этапе оценивается работа блока управления инвертором при меняющемся входном напряжении питания по действию схемы обратной связи.

Алгоритм проверки состоит из следующих этапов:

  1. ИБП отключают от цепей входного напряжения 220 вольт.
  2. К выходу оптопары подключают стрелочный тестер, переключенный в режим омметра, хотя можно использовать и цифровой мультиметр.
  3. На выход блока питания +/-12 V подают постоянное напряжение от регулируемого источника, меняют его величину и контролируют срабатывание оптопары по показаниям омметра.

При пониженном напряжении оптопара будет иметь высокое электрическое сопротивление, а при достижении на схеме уровня 12 вольт ее выход откроется, и стрелка омметра резко снизит свои показания.

Такое срабатывание свидетельствует о совместной исправности стабилитрона, оптопары и схемы стабилизации.

Не помешает также отдельно проверить целостность силового транзистора. Но предварительно его необходимо выпаять из платы.

Если позволяют габариты блока, то его можно доработать заменой:

  • выпрямительных диодов повышенной мощности;
  • накопительных конденсаторов большей емкости и напряжения.

Такие простые действия продлят ресурс работы, на который рассчитан импульсный блок питания, а его ремонт своими руками принесет несомненную пользу владельцу. Если у вас возникнут вопросы по этой теме, то воспользуйтесь разделом комментариев. Я отвечу.

Читайте также: