В каком году был создан лазерный телевизор

Обновлено: 15.05.2024

В мире существует уже немало дисплейных технологий. Многие из них не известны простому потребителю по причине того, что до их коммерческого использования дело так и не дошло. Другие, наоборот, смогли найти реальное воплощение и завоевали определенную долю на рынке. Лидерство по продажам в настоящий момент удерживают жидкокристаллические (LCD) модели и плазменные телевизоры, но и те и другие отнюдь не лишены недостатков. Производители продолжают искать пути для улучшения имеющихся наработок и реализации новых технологических решений. Одна из наиболее перспективных дисплейных технологий в настоящее время – это телевидение, основанное на использовании лазерных лучей. Лазерные телевизоры представляют собой проекционные аппараты, которые обеспечивают очень высокое качество изображения. В чем преимущества данной технологии и что пока мешает ее массовому распространению? Об этом и поговорим в этой статье.

История вопроса

Еще в 60 – 70-е годы родилась идея о том, чтобы использовать в проекторах лазерные лучи вместо обычных источников света. Путем экспериментов с использованием трех лазерных лучей (RGB) в проекторах было доказано, что такая разработка имеет право на жизнь. Преимущество лазеров состоит в том, что они обладают большей яркостью в сравнении со стандартными лампами. Соответственно, лазерные ТВ, по задумке их создателей, должны были обеспечить лучшую цветопередачу и пониженное потребление энергии. В 1969 Texas Instruments оформила патент, который позволял компании применять лазеры в ТВ-проекторах. Уже в тот момент казалось, что в мире вот-вот произойдет настоящая революция, которая должна привести к рождению телевидения с более качественной картинкой. Кроме того, применение лазеров должно было сделать проекторы более компактными и легкими в сравнении с действующими моделями.

Но по мере исследования и развития лазерной технологии возникли существенные трудности. Они касались, в первую очередь, сложности модуляции лазерного пучка и проявления зернистости изображения за счет изменения итоговой амплитуды когерентных волн. Качество изображения было превосходным, однако картинка приводила к быстрому утомлению глаз. Это объяснялось тем, что у лазера слишком узкий спектр излучения. В окружающем нас мире не существует объектов, которые способны излучать свет с таким узким спектром, поэтому для человеческого глаза это непривычно. Но все же главная причина, почему лазерные ТВ так и не поступили в розницу в начале 70-х годов, состоит в том, что они оказались очень дорогими для рядовых пользователей. Производителей оттолкнула очень высокая себестоимость производства лазерных проекторов.

Таким образом, появление лазерных телевизоров на рынке задержалось более чем на три десятка лет. Ситуация не менялась вплоть до 2006 года, когда на выставке CES компанией Novalux была продемонстрирована лазерная платформа Necsel вкупе с твердотельными источниками света. Данная платформа разрабатывалась в течение восьми лет. Новая разработка открыла путь к созданию компактных ТВ-проекторов, обеспечивающих получение высокого качества картинки. Впоследствии Novalux была поглощена австралийской Arasor, которая имела серьезный опыт в разработке передовых оптических технологий. Мировые производители всерьез обратили внимание на новое направление и занялись разработкой ТВ с использованием лазерной технологии.

Mitsubishi LaserVue TV

Mitsubishi LaserVue TV

Самой настойчивой в этом направлении стала Mitsubishi, которая уже в том же 2006 году объявила о разработке прототипа, где в роли источников света использовались лазеры Novalux. Спустя год прототип лазерного ТВ был продемонстрирован компанией Sony. Настоящий прорыв произошел в 2008 года, когда Mitsubishi на очередной выставке потребительской электроники CES представила первый в мире лазерный телевизор, запущенный в массовое производство. Это была 65-дюймовая модель LaserVue TV, которая вызвала огромный ажиотаж среди журналистов, экспертов и рядовых потребителей.

Новинка, по словам производителя, обеспечивала в два раза больший цветовой охват в сравнении с существующими моделями. Коммерческий лазерный ТВ поддерживал разрешение FullHD и имел полный набор интерфейсов, включая четыре HDMI разъема и вход для 3D-очков. Впрочем, с течением времени шум вокруг телевизора Mitsubishi несколько поубавился, поскольку компания долгое время не могла запустить его в серию, демонстрируя свой инновационный продукт исключительно на выставках.

В силу разных причин, о которых будет сказано ниже, от разработки лазерного телевидения отказались компании Epson и Sony. А вот Mitsubishi и Arasor/Novalux по-прежнему являются самыми активными игроками в этом сегменте, но у них сегодня появились другие конкуренты. Например, компания Asia Optical Co. Inc., разрабатывающая планы по выпуску новых моделей лазерных ТВ. В настоящий момент на рынке уже доступно достаточное число моделей лазерных телевизоров, хотя ажиотажного спроса на них не наблюдается. Но радужные перспективы лазерных телевизоров очевидны и в недалеком будущем, если производители смогут преодолеть отдельные трудности, они способны убрать с рынка плазму и обычные жидкокристаллические панели.

Принцип работы

Лазерное телевидение относится к проекционным системам. Но только вместо обычных ламп используются яркие лазеры. По сути, это дальнейшее развитие телевизоров с обратной проекцией. В современных лазерных моделях вместо ртутных ламп UHP, которые устанавливаются в проекционные ТВ, используются полупроводниковые лазеры. Применение лазера позволяет убрать некоторые элементы конструкции телевизора, включая, например, подвижные зеркала, цветовые фильтры, разнообразные поляризаторы и многое другое. Также здесь отсутствует необходимость осуществлять фильтрацию и разделение светового пучка от лампы на различные цвета. Вследствие этих особенностей проекционный ТВ получается достаточно компактным. Вдобавок, уменьшается энергопотребление. А яркость и контрастность картинки, наоборот, повышаются.

В обычном проекционном телевизоре световой поток от ламп проходит через движущийся диск, где размещаются цветные светофильтры. Далее световой пучок преодолевает специальный тоннель, чтобы обеспечить равномерное распределение потока света. Только после этого свет попадает на поверхность микрозеркал и формируется картинка. С лазером вся схема существенно упрощается. Лазеры излучают синий, красный, и зеленый лучи, которые проецируют свет непосредственно на матрицу микрозеркал, без необходимости применения фильтров или цветового диска.

Неотъемлемой частью лазерного ТВ является сам проектор, который может быть выполнен на основе жидкокристаллических матриц, микрозеркал (DLP) или на базе жидких кристаллов на кремниевой подложке (LCOS). Поэтому реализация лазерных моделей также может быть различной. Mitsubishi, в частности, использует в своих лазерных ТВ технологию цифровой обработки света DLP. Важно то, что лазерные лучи могут как формировать изображение, так и являться источником света для подсветки картинки на дисплее.

Преимущества

Кратко перечислим основные плюсы лазерных моделей перед конкурентными технологиями, в частности, перед ЖК и плазменными ТВ:

  • Лазерные технологии позволяют обеспечить 90-процентный охват видимых глазу цветов, а значит лазерные телевизоры могут формировать изображение, максимально близкое к тому, что мы видим в реальности. Непревзойденный цветовой охват, высокая яркость и контрастность картинки – это несомненные плюсы лазерных ТВ.
  • В отличие от светодиодов лазер не выгорает со временем, он гарантирует формирование стабильного светового потока в течение очень долгого времени. Поэтому лазерные телевизоры могут работать десятилетия на полной мощности, без каких бы то ни было проблем. Лазерные ТВ в своей конструкции не имеют движущихся элементов, что также способствует большей надежности и долговечности проекционной системы. В этом плане они имеют существенное преимущество перед ЖК панелями.
  • В отличие от некоторых жидкокристаллических телевизоров у лазерных нет проблем с передачей оттенков черного. В случае необходимости отображения черного цвета лазеры просто мгновенно отключаются. Также лазеры поддерживают высокую частоту обновления экрана.
  • В сравнении с плазмой и ЖК-панелями лазерные телевизоры характеризуются меньшим энергопотреблением. В частности, энергопотребление лазерного ТВ в четыре – пять раз меньше тех показателей, что демонстрируют современные ЖК-модели при сопоставимых диагоналях.
  • Габаритные размеры, компактность и вес лазерных ТВ сопоставимы с LCD и плазмой при более высоком качестве картинки и меньшем энергопотреблении.

Недостатки

Если лазерные телевизоры так хороши, почему же до сих пор они не пользуются повышенным спросом? Просто потому что любая технология не лишена определенных недостатков. От того, насколько преодолимы и решаемы эти трудности, в конечном счете, и зависят перспективы того или иного аппарата. В случае с лазерными телевизорами можно назвать несколько таких технологических минусов.

Во-первых, по-прежнему вызывает определенные сомнения безопасность лазерных проекционных ТВ для зрения человека. Качество изображения и цветопередача в таких телевизорах максимально приближены к границам восприятия глаза, что может вызывать утомляемость. При длительном просмотре фильмов на экране лазерного телевизора зрение серьезно напрягается. Это может приводить даже к его ухудшению. Впрочем, подобного рода опасения высказывались и по поводу пресловутой 3D-технологии. В любом случае можно сказать, что аспекты влияния лазерного телевидения на человека пока не изучены до конца. Компания Mitsubishi категорически опровергает мнение о том, что быстрое утомление глаз зрителя является существенным недостатком лазерных ТВ. Производители сегодня используют специальные рассеивающие фильтры, которые, по их словам, полностью исключают любую опасность лазерного телевизора для здоровья потребителей.

Однако главным недостатком лазерных телевизоров остается цена и их доступность для массового потребителя. Несмотря на то, что производителям удалось существенно снизить стоимость лазерного телевидения для массовой аудитории, это никак не повлияло на их рыночные перспективы. Все благодаря тому, что за это время цены на плазму и ЖК-панели сопоставимые по размерам экрана также снизились. По цене лазерные телевизоры проигрывают своим конкурентам и маркетологи пока не могут нащупать для этих аппаратов подходящую нишу. В результате, лазерные ТВ остаются за пределами массового рынка и выпускаются ограниченными сериями для людей, любящих различные технологические новинки.

Резюмируя, можно сказать, что лазерное телевидение – это технологии завтрашнего дня. Пока недостатки таких телевизоров перевешивают преимущества для массовой аудитории, однако по мере дальнейшего развития технологии ситуация будет кардинально меняться. Вероятно, в ближайшем будущем лазерные телевизоры позволят нам насладиться более сочной и объемной картинкой при просмотре фильмов и телевизионных программ.


Название лазерный телевизор придумали производители видеотехники, с 2016 года стало звучать Laser TV. На самом деле не существует лазерных телевизоров. Под этим названием продают проекторы с функционалом телевизора, в которых как источник света используются не лампы а лазеры. Особенно так любят называть свои проекторы Китайские компании.

В проекторы добавили не только HDMI порты, а также тюнеры, интернет, адаптировали смарт дистанционное управление. Проектор стал управлятся операционной системой и в итоге получился лазерный телевизор. Лазерный телевизор это проектор с функционалом телевизора.

Как работает лазерный телевизор

Принцип работы лазерного телевизора — принцип работы лазерного телевизора (проектора) не менялся уже лет 20. Для показа изображения нужен чип DLP (Digital Light Processing), такой чип используется наиболее широко так как позволяет создавать высококачественное изображение.

Что такое DLP чип в проекторе или лазерном телевизоре


Чип DLP представляет собой микросхему на которой размещаются микрозеркала. Количество микрозеркал соответствует количеству пикселей. 4K UHD (3840 x 2160) 8,3 миллиона пикселей. На чипе должно быть размещено 8,3 миллиона микрозеркал, из них как и в обычном телевизоре 2,76 миллиона пикселей должны отвечать за свой цвет. Для создания цветного изображения нужно три цвета красный, зелёный, голубой. На практике, очень сложно, работать с одним чипом. Поэтому применяют три чипа каждый отвечает за свой цвет и на нём 2,76 миллиона микрозеркал. Потом отражённый свет объединяется линзой, увеличивается и попадает на экран.

Как работает DLP чип

Зеркала размещённые на чипе имеют два положения, одно соответствует режиму включено, в этом случае отраженный свет от зеркала должен попасть на экран и режим выключено, в режиме выключено отражённый свет не попадает на экран. В режиме выключено он отражаясь направляется в тепловую ловушку где поглощается отдавая тепло. Оттенки цветов создаются временем включения зеркала. Чем дольше зеркало будет в положении включено тем более насыщенным будет цвет.

Чип DLP создаёт изображение, которое видит зритель.

Зачем в лазерном телевизоре лазеры

Из-за этого в лазерных телевизорах может быть один лазер, лучь которго потом специальными оптическими устройствами делиться на три цвета.


Или два лазера, в этом случае из голубого отделяют зелёный цвет.


Может быть и три лазера но такие схемы применяются только в коммерческих проекторах из-за большой стоимости.

Считается наиболее приемлемым для домашних лазерных телевизоров схема с двумя лазерами.

Принцип работы лазерного телевизора

Лазерныe лучи, сгенерированные лазером, попадают на DLP чипы, отражаются от микро зеркал, попадают в линзу, происходит увеличение изображения. Изображение проецируется на экран. Такие проекторы или лазерные телевизоры надо размещать на расстоянии от экрана. Придумано установить дополнительно отражающее зеркало, в этом случае проектор (лазерный телевизор можно разместить рядом с экраном).


Срок жизни лазерного телевизора

Сейчас лазеры стали более совершенными, поэтому производители заявляют срок службы лазера 20000-30000 часов. При условии, что лазерный телевизор будет работать 8 часов в день это 7 лет. Что в принципе отвечает общей практике жизни электронных устройств.

Ezoic

report this ad

Лазерный телевизор, Laser TV — принцип работы, плюсы и минусы

Лазерный телевизор ( Laser TV , проэкционный лазерный телевизор) – разновидность технологии по производству телевизионных панелей на основе лазерного излучения. Данная технология является самой перспективной, возможно именно она займёт основную нишу по производству телевизоров и мониторов в будущем, заменив LCD технологию.



Принцип технологии заключается в том, что лазерный RGB пучок, подаётся на специальную микросхему, которая отражает как зеркало в определённых участках только нужные цвета, в заданном разрешении. Этот пучок проходит через фильтр удвоения кадров и линзы для распределения пучка по проецируемой поверхности (экрану). Зритель видит обратную сторону проекции. То есть принцип заключается в знакомой всем проекции, только лазерным светом и с обратной стороны.

Технология впервые была представлена австралийской компанией Arasor на CES 2006, в виде прототипа. По договорённости с Mitsubishi Electric , в этом же году был выпущен ещё один прототип. Идею подхватили Seiko Epson , Samsung Electronics и Sony . Последняя компания, позже выпустила прототип на аналогичной технологии собственного производства. Правда на этом всё и закончилось, пока.

Идею продолжает развивать Mitsubishi Electric , выпустив первый серийный FullHD 65’, лазерный телевизор Mitsubishi LaserVue TV.


Цена данного телевизора была равна ~ $7 тыс., что дороже чем аналогичный плазменный телевизор.

Лазерные телевизоры, отображают картинку намного реалистичней, чем плазменные. Наглядное сравнение плазменного телевизора Samsung (справа) и Mitsubishi LaserVue TV (слева).


Больше углы обзора, контрастность, глубина чёрного и много другое.

Плюсы лазерной технологии в сравнении с другими технологиями отображения:

  • · Беспрецедентная цветопередача, которая может достигать > 90% от видимого человеком диапазона, что создаёт очень реалистичную картинку.


Картинка лучше чем на любом плазменном телевизоре.

  • · Относительно низкое энергопотребление
  • · Низкий нагрев при работе
  • · Долговечность. Срок службы источников света (минимум 20000 часов, что ~ равно 2,5 года беспрерывной эксплуатации).
  • · Отличная контрастность и насыщенность оттенков
  • · Высокие углы обзора
  • · Возможность создания 3 D картинки из 2 D

Минусы Лазерной технологии в сравнении с другими технологиями отображения:

Существуют телевизоры с совмещёнными лазерной и диодной RGB подсветкой цветов. Данные телевизоры, как это не парадоксально, тоже выпускает компания Mitsubishi Electric . Это позволяет телевизорам показывать контрастность одну из лучших на рынке, если не лучшую.

Что же представляют собой телевизоры на основе лазерных технологий и как они работают? Увидеть их вживую удалось пока немногим - прототипы были представлены только на международных выставках CES 2007, CES 2008 и им подобных. Интернет же пестрит в основном фотографиями редких прототипов и восторженными отзывами о качестве их картинки. Японские Sony и Mitsubishi, корейская Samsung, австралийская Arasor International уже заявили о намерении производить лазерные телевизоры. Но чаще всего в связи с новой технологией упоминают американскую фирму Novalux Inc. Взглянем на технологию глазами калифорнийской компании-разработчика.



Увеличить фото
Лазеры меняют световую систему
В первую очередь стоит отметить, что лазерные телевизоры - это телевизоры проекционные. Сердцем любой проекционной системы на базе микро-дисплеев является "световой движок", чаще всего на основе DLP или LCD технологий. Этот "движок" - не что иное как набор оптики и электроники (а иногда - и механики), проецирующий красный, зеленый и синий цвета, составляющие цветное изображение, на экран.Лазеры упрощают все типы проекционных конфигураций (LCD или DLP, на базе одного или трех чипов), снижая стоимость систем. Они позволяют уменьшить световую систему, что приводит к уменьшению общих размеров устройств. Это дает нам лучшую производительность, большую яркость и сочность цветов.

Преимущества для систем на основе LCD-чипов


Увеличить фото
LCD и лампы
Системы проецирования на трех чипах LCD расщепляют белый цвет лампы подсветки на три базовых цвета - красный, зеленый и синий - с помощью соответствующих призм, полупрозрачных зеркал и светофильтров. Изображение формируется тремя устойчивыми к высоким температурам полисиликоновыми ЖК-панелями (на просвет). Системой призм, триада базовых цветов вновь собирается в единый луч и проецируется на экран.

LCD и лазеры
В новой системе все намного упрощается. Расщеплять белый луч больше нет необходимости, так как красный, зеленый и синий лучи сразу формируются соответствующими твердотельными лазерами. Каждый базовый цвет получается чистым, без паразитных цветовых оттенков. Проецирование лучей осуществляется непосредственно на ЖК-панель. Отпадает необходимость в дополнительных поляризаторах, ультрафиолетовых и инфракрасных фильтрах, цветовых светофильтрах, полупрозрачных или поворотных зеркалах и тому подобном - что существенно упрощает световую систему проекционного телевизора.

Преимущества для систем на основе DLP-чипов


Увеличить фото
DLP и лампы
В системах DLP, свет от лампы подсветки проходит сквозь быстро вращающееся колесо с секторами-светофильтрами базовых цветов, последовательно создавая красную, зеленую и синюю составляющие итоговой цветной картинки.

DLP и лазеры
Заменив лампу подсветки тремя лазерами можно избавиться от электромеханической части оптических систем даже в аппаратах с одним DLP чипом. Микрозеркальный чип будет освещаться тремя лазерами последовательно, с использованием электронной коммутации взамен моторчикам и двигающимся деталям, что значительно повысит ресурс работы устройства.

Почему лазеры, а не лампы
Про возможность отказаться от сложных оптических систем расщепления белого цвета на чистые базовые цвета мы уже упомянули. Одно это позволяет значительно снизить сложность, а значит и себестоимость проекционных систем. Но и кроме этого использование лазеров дает значительные преимущества.

Широта цветового охвата. На рисунке виден "лепесток", охватывающий весь диапазон цветов, различимых человеческим глазом. Малый белый треугольник в центре показывает диапазон цветов, который может обеспечить обычная лампа подсветки (для систем цветности NTSC). Большой белый треугольник показывает диапазон, гарантируемый лазерными системами. Как можно видеть, цветовой охват увеличивается более чем вдвое и вплотную приближается к возможностям зрения человека.

Яркость. Как насчет 1000 люмен в вашем проекционном телевизоре? Яркость, сопоставимая с яркостью видеопроекторов, рассчитанных на куда большие размеры проецируемых изображений. Лазерные технологии позволяют с легкостью получить их и в телевизоре. В результате получается яркость высокая, как никогда ранее, которая не зависит от углов просмотра экрана.

Читайте также: