Двигатель передает вращательное движение маховику главного вала швейной машины с помощью

Обновлено: 18.04.2024

Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами : обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.

Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машины-орудия не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.

Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-орудию, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.

Передача (в механике) соединяет вал источника энергии - двигателя и валы потребителей энергии - рабочих органов машины, таких, например, как ведущие колёса гусеничного движителя или автомобиля.

Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.

При проектировании к механическим передачам предъявляются следующие требования:

- высокие нагрузочные способности при ограниченных габаритных размерах, весе, стоимости;

- постоянство передаточного отношения или закона его изменения;

- обеспечение определенного взаимного расположения осей ведущего и ведомого валов, в частности, межосевого расстояния a w ;

- малые потери при передаче мощности (высокий кпд) и, как следствие, ограниченный нагрев и износ;

- плавная и бесшумная работа;

- прочность, долговечность, надёжность.

Передачи имеют широкое распространение в машиностроении по следующим причинам:

1) энергию целесообразно передавать при больших частотах вращения;

2) требуемые скорости движения рабочих органов машин, как правило, не совпадают с оптимальными скоростями двигателя; обычно ниже, а создание тихоходных двигателей вызывает увеличение габаритов и стоимости;

3) скорость исполнительного органа в процессе работы машины-орудия необходимо изменять (например, у автомобиля, грузоподъемного крана, токарного станка), а скорость машины-двигателя чаще посто­янна (например, у электродвигателей);

4) нередко от одного двигателя необходимо приводить в движение не­сколько механизмов с различными скоростями;

5) в отдельные периоды работы исполнительному органу машины тре­буется передать вращающие моменты, превышающие моменты на валу машины-двигателя, а это возможно выполнить за счет уменьше­ния угловой скорости вала машины-орудия;

6) двигатели обычно выполняют для равномерного вращательного движения, а в машинах часто оказывается необходимым поступательное движение с определенным законом;

7) двигатели не всегда могут быть непосредственно соединены с исполнительными механизмами из-за габаритов машины, условий техники безопасности и удобства обслуживания;

8) распределять работу двигателя между несколькими исполнительными органами машины.

Как правило, угловые скорости валов большинства используемых в настоящее время в технике двигателей (поршневых двигателей внутреннего сгорания, газотурбинных, электрических, гидравлических и пневматических двигателей) значительно превышают угловые скорости валов исполнительных или рабочих органов машин, порой на 2-3 порядка. Поэтому доставка (передача) энергии двигателя с помощью передачи любого типа, в том числе и механической, происходит, как правило, совместно с одновременным преобразованием моментов и угловых скоростей (в сторону повышения первых и понижения последних).

При этом необходимо отметить, что конструктивное обеспечение функции транспортного характера – чисто передачи энергии иной раз вступает в логическое противоречие с направлением задачи конечного преобразования силовых и скоростных параметров этой энергии. Например, в трансмиссиях многих транспортных машин (особенно высокой проходимости) входной редуктор сначала повышает частоту вращения, понижение ее до требуемых пределов производят бортовые или колесные редукторы.

Этот прием позволяет снизить габаритно-весовые показатели промежуточных элементов трансмиссии (коробок перемены передач, карданных валов) – размеры валов и шестерен пропорциональны величине передаваемого крутящего момента в степени 1/3.

Аналогичный принцип используется при передаче электроэнергии – повышение напряжения перед ЛЭП позволяет значительно снизить тепловые потери, определяемые в основном силой тока в проводах, а заодно уменьшить сечение этих проводов.

Иногда передача механической энергии двигателя сопровождается также преобразованием вида движения (например, поступательного движения во вращательное или наоборот) или законов движения (например, равномерного движения в неравномерное).

Широко известными образцами таких передач являются кривошипно-шатунный механизм и кулачковый привод механизма газораспределения.

Классификация механических передач

Механические передачи, применяемые в машиностроении, класси­фицируют (рис.1 и 2):

по энергетической характеристике механические передачи делятся на:

- кинематические (передаваемая мощность Р

- силовые (передаваемая мощность Р ≥0,1 кВт).

по принципу передачи движения:

- передачи трением (примеры: фрикционная — рис.1, а и ременная — рис.2, а) - действующие за счет сил трения, создаваемых между элементами передач;

Фрикционные передачи подразделяют на:

- фрикционные передачи с жесткими звеньями (с различного рода катками, дисками);

- фрикционные передачи с гибким звеном (ременные, канатные).

- зацеплением (примеры: зубчатые — рис.1, б, червячные — рис.1, в; цеп­ные — рис.2, б; передачи винт-гайка — рис.1, г, д) - работающие в результате возникновения давления между зубьями, кулачками или другими специальными выступами на деталях.

Передачи зацеплением делятся на:

- передачи зацеплением с непосредственным контактом жестких звеньев (цилиндрические, конические, червячные);

- волновые передачи зацеплением;

- передачи зацеплением с гибким звеном (зубчато-ременные, цепные).

Как фрикционные, так и зубчатые передачи могут быть выполнены с непосредственным контактом ведущего и ведомого звеньев или посредством гибкой связи – ремня, цепи.



Изначально устройство швейной машины разрабатывалось таким образом, чтобы она могла самостоятельно совершать работу, заменив тем самым человека. Это изобретение позволило значительно облегчить труд швеи, и повысить его производительность. Схема работы позволяет даже абсолютному новичку, никогда не державшему иголку в руках, прошить прямые и качественные стежки. Новейшее поколение устройств шьет не только простым способом, они способны создавать узоры и вышивку. Достижения современных технологий поражают, но в основе принципа работы каждой швейной машины все так же лежит тот самый первый алгоритм, разработанный много лет назад.

Схема устройства швейной машины

Существуют базовые части швейной машины, без которых не обходится ни один агрегат:

  • маховик;
  • моталка;
  • рукав;
  • швейная платформа;
  • колесо выбора строчки;
  • рукавная стойка
  • ресивер (обратный ход)
  • держатель иглы;
  • игольная пластина;
  • лапка;
  • рычажок подъема и опускания лапки.

Устройство швейной машины

Но это те детали, которые видны при поверхностном осмотре – они являются малой толикой скрытого под корпусом механизма. Там внутри находится сложная система для приведения в действие челнока. Можно сказать, что работа швейной машины целиком и полностью основывается на челночном устройстве. Для неподготовленного человека схема деталей обычной швейной машины может показаться сложной и запутанной, но все становится понятным, если немного разобраться.


Устройство взаимодействия главного и нижнего вала


Шпулька

Шпулька — наиболее заметная деталь, с которой у портного происходит постоянное взаимодействие. Располагается она за выдвигающейся панелью под иглой. Чтобы достать шпульку из гнезда, потяните ее на себя и немного вверх. Таким образом вы отогнете небольшой захват и освободите элемент.

Шпулька

Шпулька необходима для поставки ниток, которые перед работой на нее наматывают из основной катушки. Происходит это автоматически – нить из катушки продевают в специальное отверстие шпульки. После этого деталь укладывают в гнездо, а катушку с нитками закрепляют на корпусе машинки. При активации маховика происходит вращение шпульки, которая наматывает нить на свою ось, катушка с нитками при этом так же вращается.

Шпулька с ниткой

Для натяжения нити в процессе работы строение шпульки включает в себя маленький винт. Грамотно выставленные настройки исключают возможность пропуска верхних и нижних стежков. Портной может шить, не отвлекаясь на постоянные проверки качества. Внимательно проконтролируйте нить перед началом работы, излишнее ее натяжение вызывает постоянные разрывы. Посмотрите видео про идеальное натяжение нити.

Маленькая деталь, так называемый носик, предназначен для страховки катушки от случайных выпадений шпульки. Он крепится на двигающейся панели, которая отжимается пружинным механизмом от корпуса втулки. Если все работает, как задумано, то в системе не происходит сбоев. Пока эта деталь находится в правильном положении, шпулька надежно закрепляется в швейной машинке и ее невозможно вытащить. Для выполнения обратной сборки отогните носик, и, удерживая его в таком положении, вставьте шпульку на место.

При изучении корпуса на швейной машине можно обнаружить продолговатый выступ. Его задача заключается в препятствовании вращению катушки со шпулькой или приводом челнока.

Швейная машина Зингер

Дополнительные элементы комплектации машинки

Шпулька для швейной машины похожа на маленькую катушку. Она может быть пластиковой или металлической. Шпулька устанавливается под игольной пластиной и содержит запас нижней нити.

Шпульки разных производителей и разных моделей машин различаются. Используйте шпульки, предназначенные для вашей машины, чтобы избежать повреждений.

Металлические и пластиковые шпульки не подходят для одной модели машины

Металлические и пластиковые шпульки не подходят для одной модели машины

Достаточное количество шпулек

Стоит приобрести дополнительные шпульки, особенно если вы привыкли работать над несколькими изделиями одновременно. У вас под рукой всегда будут пустые шпульки, и вам не придется их разматывать.

Швейные машины продаются в комплекте с некоторыми аксессуарами, среди которых будут как минимум несколько шпулек, распарыватель, щеточка для чистки, набор игл и флакон с маслом для смазки.

Стандартные аксессуары для швейной машины

Стандартные аксессуары для швейной машины

Как следует из названия, распарыватель позволяет быстро и легко распороть строчку. С его помощью также делают отверстия для пуговиц.

К машине прилагается несколько прижимных лапок: как минимум, одна универсальная лапка (многофункциональная — для прямой строчки и зигзага), лапка для молнии, лапка для фантазийных строчек и лапка для выметывания петель под пуговицы. Существует множество других лапок, они могут иметь разную ширину подошвы, на некоторых есть желобки и разметка, чтобы легче было шить. Эти лапки будут описаны в следующих главах вместе с техниками шитья, для которых они предназначены.

В швейных машинах предусмотрены специальные места для удобного хранения аксессуаров

У вашей швейной машины могут быть и другие аксессуары.

Расширительный столик

Коленный рычаг — металлический стержень U-образной формы. Он спускается до уровня колена и позволяет опускать и поднимать прижимную лапку, толкая рычаг вправо бедром или коленом. Это упрощает шитье: руки могут заниматься только тканью, не отвлекаясь на рычаг для поднятия лапки. Коленный рычаг крепится на передней панели швейной машины на уровне соответствующего гнезда. Этот аксессуар съемный. Его можно убрать, когда он не нужен или когда машину необходимо перенести.

Коленный рычаг

Челнок

Швейный челнок — ключевой конструктивный элемент швейного оборудования. От исправного состояния механизма и правильности настройки взаимодействия со швейной иголкой зависит качество строчки. Проблемы в этом узле вызывают обрыв нитей, петляние, пропуск стежков и прочие неприятности. Если все настроено верно, строчка получается ровной, без участков обрыва.

На качество шитья оказывает существенное влияние состояние поверхности челнока. Не должно быть сколов, трещин, следов ржавчины, царапин, остатков масла и загрязнений. Все это препятствует равномерному движению нити, в результате чего возникают моменты вытяжения нити, строчка получается некрасивой— с заметно слабой натяжкой стежка.

Отработавший свой ресурс расходник подлежит замене. При поиске подходящей детали на замену возможны трудности, связанные с типами челночных механизмов для швейного оборудования. Покупателю следует четко представлять, какой челнок подходит для его модели машинки.

В швейном оборудовании используются челночные механизмы трех типов.

    Вертикальный классический челнок был изобретен И.Зингером в 1851 году. Конструкция представляет собой колпачок со специальным пазом, внутрь которого вставляется шпулька с нитью. При работе челнок передвигается как вертикально, так и горизонтально, отсюда еще одно название — качающийся. В циклическом движении деталь снимает нить с иглы, переводит в нужное для создания петли положение и возвращается в первоначальную позицию. Такой тип челнока применялся на машинках советского производства Чайка, Подольск и моделях немецких брендов Veritas и Singer прошлых лет. Сегодня его можно встретить на бюджетных механизмах.

Челнок машинки Подольск

Горизонтальный челнок

Челнок двойного обегания

Отличие вертикальной и горизонтальной шпули

В последнее время все большую популярность набирают швейные машинки, оснащенные горизонтальным челночным устройством. Обычно челнок располагается вертикально. Чтобы изъять его из машинки, нужно открыть специальную панель и, потянув за хвостик, достать устройство, в которое вставляется шпулька. Этот процесс иногда сильно тормозит работу, ведь мастер не видит, сколько ниток осталось на маленькой катушке, и проверить это можно, только остановив шитье.

Шпулька, размещенная в горизонтальном челночном устройстве, всегда на виду. Она располагается прямо под рабочим столиком и закрывается пластиной из противоударного пластика. Сквозь него можно визуально оценить количество ниток на шпульке.


Функционирование швейной машины

Как же устроена швейная машина, и какие силы приводят в действие ее внутренние процессы? В основе всей системы лежит простейший принцип, основанный на заданном движении иглы. Захватывая с собой верхнюю нить, она продевает ее вниз. Далее ее подхватывает уже готовый к этому челнок, и переплетает нижнюю с верхней ниткой.

Простейшее движение дает основу для таких сложных манипуляций, как зигзагообразные швы и даже узорная вышивка. Видео о том, как выполнять вышивку на домашней швейной машинке.

Компании производители совершенствуют свои модели. Сегодня уже существуют агрегаты со специальным дополнением в виде боковой иглы для обработки краев материи, однако найти их в простых магазинах нелегко.

Внутренняя часть корпуса скрывает в себе привод, который приводится в действие вручную (в механических машинках) либо при помощи электродвигателя (в электромеханических устройствах). Двигатель посредством шатуна запускает вращение трех других валов. Если вдаваться в подробности, можно сказать что система включает одну промежуточную ось, которая передает вращательный импульс трем описанным валам.

Эта система рассчитана на длительный период использования и считается довольно долговечной. Для нанесения смазочных материалов на подвижные части в корпусе предусмотрены отверстия, в которые без труда может пройти носик масленки.

Швейная машинка с педалью

Современные швейные машины оснащаются ножной электрической педалью

В более продвинутых моделях предусматривается педаль, при нажатии ногой на которую приводятся в движение все механизмы. Она гораздо удобнее в использовании, так как предоставляет свободу рукам. Конечно же, современные конструкторы усовершенствовали и эту систему, превратив педаль из механической в электрическую.






Перемещение ткани

Говоря о том, как работает домашняя швейная машина, нельзя опустить описание устройства, предназначенного для протяжки материи. Это революционное для своего времени изобретение позволило задавать нужную длину стежков, а также избавило портных от обязанности следить за продвижением лоскута.

Происходит все следующим образом:

  • на первом этапе, по центральной части проходит главный вал, который соединяется с осью маховика через шатун;
  • в боковых частях проходят два стержня, при синхронном вращении которых приходит в движение протяжный механизм.

Швейная машина изнутри

Все манипуляции по настройке длины стежка проводят посредством поворотного рычажка. Совсем небольшая деталька скреплена с осью хвостатого ключа. При поворотах рычага хвосты изменяют свою конфигурацию от начального положения, что приводит к изменению длины стежка в строчке. Видео показывает, как правильно проводить настройку длины шагов.

Самый главный узел бытовой электрической машинки


Натяжение ниток

Эту манипуляцию проводят при помощи специального винта, расположенного над иглодержателем. Натяжение верхней нити — важный показатель, контролирующий качество шва. Недалеко от иглодержателя находится особое ушко, которое перемещается в процессе работы и не позволяет натянутой нити ослабнуть или провиснуть, когда игла идет вверх. Без этой маленькой детали вся работа швейной машины свелась бы на нет.

Видео о том, как собрать и установить регулятор натяжения нити.

Плюсы и минусы

Пошив на ручных моделях имеет недостатки и преимущества. Они зависят от того, какого поколения машинка. Старые аппараты все же остались массивными. У них несколько ограничен функционал. Но они не зависят от сети. Это важное преимущество. Модели нового поколения и вовсе миниатюрные. Однако самые малогабаритные представители ненадежны. И не предназначены для работы со сложными материалами. Выполняют основные функции для простых швейных операций. Не только каждый вид, но и модель стоит рассматривать отдельно для определения положительных и отрицательных сторон.

Вам это будет интересно Шитье красивого халата без выкройки и шитья

Устройство намотки

Под конец описания нужно сказать несколько слов об устройстве намотки. Как правило, недалеко от маховика для намотки располагается маленькое прижимное колесо с валом, укомплектованным риской.

На панели, расположенной под ним, располагается ушко с еще одним колесом небольшого размера. Катушка устанавливается на вертикальную подставку, а уже от нее нить пропускается над столом, чтобы быть намотанной на шпульку. Чтобы обеспечить правильную работу, прижимное колесо аккуратно вдавливается пальцем, после чего начинается вращение, передающееся от привода швейной машины.

Намотка нити на шпульку

Намотка нити на шпульку

Мини-вариант

Наш обзор был бы неполным, если бы мы не рассказали о ручных мини-устройствах для шитья. Строение такого агрегата очень простое. Внешне он напоминает офисный степлер. Нижняя часть оснащена пластинкой, по которой скользит ткань, там же происходит захват нижней нити, подаваемой со шпульки. Сама же катушка, которая в обычной швейной машине находится в челночном механизме, крепится сбоку, рядом на специальный штырь устанавливается бобина, подающая нить на иглу. Для того чтобы катушки не спадали, их нужно фиксировать заглушками. Данный вид мелкой бытовой техники работает от батареек.

устройство швейной машинки чайка

Начало

Проект первой швейной машины предложил в 15 веке Леонардо да Винчи, но он так и остался невостребованным. Уже в XVIII веке немецкому изобретателю удалось получить патент на машину, имитировавшую сшивание тканей вручную. Затем англичанин изобрел машину с ручным приводом для пошива сапог. При этом заготовки для сапог приходилось при шитье двигать руками. Французы пошли дальше и изобрели машину цепного переплетения из одной нити.

Изобретателем швейной машины с челноком стал американец Эллиас Хоу. Созданная им в 1845 году машинка тоже не была идеальной, но все же годилась для шитья больше, чем все машины до нее. Материал, наколотый на шпильки транспортера, двигался в ней вертикально, а игла двигалась по горизонтали. Челнок совершал движение подобно челноку ткацкого станка. Машина была популярна, но очень часто ломалась.


Урок знакомит учащихся с устройством ножной швейной машины, регуляторами натяжения верхней и нижней нитки, с их расположением на корпусе швейной машины.

Описание разработки

Цель: ознакомить учащихся с устройством ножной швейной машины, регуляторами натяжениями верхней и нижней нитки, с их расположением на корпусе швейной машины; с устройством моталки, машинной иглы и его установкой; научить подбирать и устанавливать машинные иглы, правильно наматывать нитки на шпульку; воспитывать любовь к швейному делу, внимательность; развивать координацию рук.

Методы: объяснительно–иллюстративный (рассказ), индуктивный (от простого к сложному)

Тип урока: комбинированный

Наглядности: плакаты, технологические карты

Ход урока

Организационный момент.

Проверка формы и готовности к уроку

Повторение пройденного материала.

Какие волокна относятся к натуральным?

На какие две группы делятся натуральные волокна?

Перечислите животных, из которых можно получить волокна?

Каковы основные свойства шёлка?

Что образуют шерстяные и шёлковые волокна при горении?

Спекший шарик легко растирается пальцами, запах жженого пера.

Какие ткацкие переплетения знаете?

Дайте характеристику полотняному и саржевому переплетению?

Какое отличие между атласным и сатиновым переплетением?

Теоретическая часть. Изучение нового материала:

Дать характеристику швейной машины с ножным приводом.

Как мы уже знаем, бытовые швейные машины выпускают с тремя видами приводов. Какие три вида привода швейной машины знаете?

Швейная машина с ножным приводом отличается от ручной, тем, что приводится в движение с помощью ног. Она быстроходна, но уступает электрической машине. Во время работы на швейной машине с ножным приводом сокращается время шитья, чем на ручной.

Устройство ножного привода швейной машины.

Ножной привод состоит: педаль, шатун, приводное колесо, приводной ремень, щиток.

Принцип работы: педаль приводиться в колебательные движения ногами работающего, затем с помощью шатуна движение преобразуется во вращательное и передается на приводное колесо. Приводное колесо и шкив махового колеса соединяется приводным ремнем, который передает движение главному валу. Главный вал приводит в движение рабочие органы: игловодитель с иглой, нити притягиватель, зубчатую рейку, челночное устройство.

Урок по технологии Швейная машина с ножным приводом

Машинные иглы различаются по номерам от 70 до 210.

В зависимости от толщины, плотности и качества ткани применяют различные номера игл.

Для толстой ткани нельзя применять тонкую иглу, так как она может сломаться, а для тонкой ткани нельзя применять толстую иглу, она оставляет отверстия.

Нельзя применять тупые и ржавые иглы, так как они прорубают ткань, делают затяжки.

Устройство иглы

Машинная игла состоит: колба, стержень, остриё, лыска, длинный и короткий желобок, ушко

РУЧНОЙ ПРИВОД

Ручной привод состоит из корпуса 1 (рис. 17), который крепится к рукаву машины болтом 13. В корпусе установлена пара цилиндрических зубчатых шестерен 4 и 6 с передаточным отношением 1 : 3. Шестерни закрыты крышкой 8, которая крепится к корпусу двумя винтами 9. Малая шестерня 6 выполнена заодно с поводком 3, который входит в окно маховика. Малая шестерня шарнирно установлена на оси 5, а большая на осп 2. Большая шестерня имеет выступы 12, к которым крепится ручка 11 с помощью оси 7 и стопора 10. Стопор 10 подпружинен и может оттягиваться при переводе ручки 11 в нерабочее положение. В это положение ручка переводится для хранения или транспортировки во избежание поломки и уменьшения габарита машины.

При вращении ручки 11 поводок 3 приводит в движение маховик машины. Вращать ручку необходимо только от себя. При этом маховик и главный вал машины будут вращаться в нужном направлении (т. е. на себя). Для легкости хода необходимо периодически смазывать оси большой и малой шестерен.

НОЖНОЙ ПРИВОД

Если бытовая швейная машина скомплектована со столом, то пользуются ножным приводом. Для приведения машины в рабочее состояние необходимо маховик соединить с приводным колесом 1 (рис. 18) посредством круглого кожаного ремня 27 и металлической скрепки 28.

Ножной привод состоит из педали 17, подвижно установленной на двух осях 16. Оси 16 закреплены контргайками 24 на кронштейнах 15, которые в свою очередь болтами крепятся к днищу 14 стола. К педали 17 посредством шурупов крепится кронштейн 18. В отверстие кронштейна вставлена гильза 22 и закреп лена контргайкой 19 (сечение С-С). В гильзу вставлен шаровой наконечник тяги 21, который снизу поддерживает подпятник 23. Для смягчения удара и уменьшения стука при работе между подпятником 23 и шаровым концом тяги 21 проложена кожаная шайба 20. Верхний конец тяги 21 ввернут в головку 26 и зафиксировав контргайкой 13 (сечение В—В). В головку также вставлен сепаратор 12 и уложены шарики 7 которые поджимаются круглой гайкой 6. Ось 9 посредством шайбы 10 и гайки 11 неподвижно крепится к приводному колесу 1. Для легкости вращения шарики 7 смазаны густой смазкой, которая долго сохраняет свои свойства и обеспечивает нормальную работу этого узла.
Приводное колесо 1 центральным отверстием шарнирно установлено на оси 5 и удерживается головкой 4 (сечение А-А). Ось 5 неподвижно закреплена в кронштейне 3 болтом 2. Кронштейн 3 тремя болтами 25 крепится к боковой стенке стола-тумбочки. Ножной привод освобождает руки работающего для выполнения швейной операции. Работа на машине с ножным приводом требует определенного навыка, хотя значительная масса и большой диаметр приводного колеса способствуют равномерному вращению главного вала машины при толчкообразном движении педали 17.

ЭЛЕКТРИЧЕСКИЙ ПРИВОД

Электропривод состоит из однофазного коллекторного асинхронного электродвигателя и пускорегулирующего реостата. Электродвигатель может быть встроенным в корпус машины или навесным. Тот и другой имеют свои преимущества и недостатки. Встроенный электродвигатель делает машину более компактной, лучше защищен от внешних повреждений.

Навесной двигатель проще отремонтировать, заменить контактные щетки или приводной ремень. Наиболее распространен отечественный электропривод МШ-2, выпускаемый Серпуховским заводом. Навесной электродвигатель 7 (рис. 19) крепится к кронштейну 1 двумя скобами 6 посредством гаек 8. Кронштейн 1 крепится к корпусу машины болтом 2 (как и кронштейн корпуса ручного привода). Шкив 9, закрепленный на валу электродвигателя, клиповый ремень 3 передает вращение маховику 5, закрепленному на главном валу машины фрикционным винтом 4.
На рис. 20 показана электрическая схема электропривода. Электродвигатель Д и пускорегулирующий реостат РП являются источниками искровых разрядов, вызывающих радиопомехи. Для подавления радиопомех пластмассовый корпус электродвигателя изнутри покрыт специальным составом, не пропускающим радиопомехи в эфир, а реостат оснащен специальными конденсаторами С1 С2 С3 и индуктивными катушками L1 и L2, которые являются фильтром, препятствующим прониканию в бытовую электросеть вредных импульсов тока.
Пускорегулирующий реостат находится в карболитовом корпусе. Он выполнен в виде ножной педали и служит для включения машины и регулирования частоты вращения главного вала в процессе ее работы.
Основание 1 (рис. 21) соединяется с крышкой 4 четырьмя шурупами 27 через резиновые втулки 26. К основанию 1 двумя винтами 11 с гайками 12 и шайбами 13 крепится корпус 10 реостата. Реостат от корпуса изолирован асбестовыми шайбами. В отверстия корпуса 10 вставлены два столбика из угольных дисков 33 толщиной 0,4—0,5 мм.

Техническая характеристика электропривода МШ-2

Номинальное напряжение, В 220
Частота, Гц 50
Нагрузочный момент, г/см 670
Частота вращения вала, об/мин 6000
Мощность на валу, Вт 40
Ток, А 0,47
Тип реостата Угольный

К корпусу 10 винтами 9 крепятся два держателя 8, в отверстия которых вставлены угольные контакты 7.
В отверстие крышки с внутренней стороны вставлена кнопка 6, вилка которой охватывает штифт 5 нажимного рычага 3. Рычаг 3 шарнирно укреплен на оси 38, вставленной в отверстия стойки 39. Стойка 39 крепится к основанию 1 винтом 2.

Нижнее плечо рычага 3 соприкасается с толкателем 37, который перемещается под корпусом реостата 10. В вилку, расположенную на конце толкателя 37, под действием пружины 15 упирается контактный диск 16. Диск 16 закреплен на штоке 14. На конец штока 14 надета втулка 36, которая под действием пружины 15 прижимается к головке штока 14. На втулку 36 напрессованы контактная пластина 34 и ограничительная пластина 35. Справа в отверстие корпуса 10 реостата вставлены направляющие винты 32. На их концах закреплены контактные пластины 19. К пластинам 19 шайбами 31 и гайками 30 присоединены провода 29, идущие от конденсатора 23.
Дроссели 18 и 28 также соединены с пластинами 19. К конденсатору 23 припаяны концы проводов 25, соединяющие педаль с электродвигателем. Вложенные в отверстия основания 1 дроссели 18 и 28 охватываются скобой 22, прикрепленной к основанию 1 винтом 21. Включив штепсельную вилку педали в электросеть, нужно нажать ногой на кнопку 6. Рычаг 3 повернется по часовой стрелке и переместит толкатель 37, который, перемещаясь вправо, через контактную пластину 34 нажмет на контакты 7. Диски 33 подожмутся, и цепь электродвигателя замкнется через угольный реостат. Чем сильнее нажимать на кнопку 6, тем плотнее будут поджиматься диски 33, сопротивление между ними уменьшится, а частота вращения главного вала машины будет увеличиваться. При нажиме на кнопку 6 до отказа контактный диск 16 соприкоснется с контактными пластинами 19, и ток, минуя угольные диски, потечет по обмотке электродвигателя. Вал электродвигателя в это время будет вращаться с частотой 6000 об/мин. При полном отпускании кнопки 6 пружина 15 разомкнет контактную пластину 34 с контактами 7. Ток не сможет протекать по цепи электродвигателя и электродвигатель выключится.

Чтобы оставлять комментарии необходимо зарегистрироваться.
You have no rights to post comments

Читайте также: