Нагревание утюга это какое явление

Обновлено: 02.05.2024

Тепловые явления – это явления, связанные с нагреванием или охлаждением тел, а также с изменением их агрегатного состояния.

Все тепловые явления связаны с температурой.

Все тела характеризуются состоянием своего теплового равновесия. Главной характеристикой теплового равновесия является температура.

Поскольку температура является физической величиной, то её можно и нужно измерить. Для измерения температуры используется прибор, который называется термометр (от греч. термо – тепло, метрео – измеряю).

Первый термометр (а, точнее, его аналог) изобрёл Галилео Галилей. Изобретение Галилея, которое он представил своим студентам на лекциях в университете в конце XVI века (1597 г.), было названо термоскопом.

Любой термометр основан на следующем принципе: изменение физических свойств веществ в зависимости от температуры.

Опыт Галилея

Рис. 1. Опыт Галилея

Опыт Галилея (см. Рис. 1) состоял в следующем: он взял колбу с длинной ножкой и наполнил её водой. Затем взял стакан с водой и перевернул колбу ножкой вниз, поставив в стакан. Часть воды, естественно, вылилась, однако, в результате, в ножке остался определённый уровень воды. Если теперь нагревать колбу (в которой находится воздух), то уровень воды будет опускаться, а если охлаждать, то, наоборот, повышаться. Это связано с тем, что при нагревании вещества (в частности, воздух) имеют свойство расширяться, а при охлаждении – наоборот, сужаться (именно поэтому рельсы делают несплошными, а провода между столбами иногда немного провисают).

Эта идея и легла в основу первого термоскопа, который позволял оценивать изменение температуры (точно измерить температуру таким термоскопом нельзя, так как его показания будут сильно зависеть от атмосферного давления).

На сегодняшний день сохранились три основные шкалы.

1. Шкала Цельсия

Наибольшее распространение получение шкала, которая с детства известна каждому – шкала Цельсия.

Андерс Цельсий – шведский астроном, который предложил следующую шкалу температур: 0 о С – температура кипения воды; 100 о С – температура замерзания воды. В настоящее время все мы привыкли к перевёрнутой шкале Цельсия.

Примечание: сам Цельсий говорил, что такой выбор шкалы вызван простым фактом: зато зимой не будет отрицательной температуры.

2. Шкала Фаренгейта

В Англии, США, Франции, Латинской Америке и некоторых других странах популярностью пользуется шкала Фаренгейта.

Габриель Фаренгейт – немецкий исследователь – инженер, который впервые применил свою собственную шкалу для изготовления стекла. Шкала Фаренгейта более тонкая: по размерности градус шкалы Фаренгейта меньше градуса шкалы по Цельсию.

3. Шкала Реомюра

Техническая шкала придумана французским исследователем Р. А. Реомюром. По этой шкале 0 соответствует температуре замерзания воды, а вот в качестве температуры кипения воды Реомюром была выбрана температура в 80 градусов.

В физике, в основном, используется так называемая абсолютная шкала – шкала Кельвина. 1 градус по Цельсию равен 1 градусу по Кельвину, однако температура в 0 о С соответствует приблизительно 273 К .

Шкала
Цельсия

Шкала
Фаренгейта

Шкала
Реомюра

Шкала
Кельвина

Кем и
когда
введена.

А. Цельсия
шведский
астроном, физик
1742 г.

Фаренгейт
стеклодув из Голландии
1724 г.

Реомюр французский физик
1726 г.

Томсон
(лорд Кельвин)
английский физик
1848 г.

Наличие положительных и отрицательных температур

0 о C
– температура таяния льда,
100 о C
– температура кипения воды.

32F
– температура таяния льда,
212F
– температура кипения воды.

0R
– температура таяния
льда,
80R
– температура кипения воды.

0K – абсолютный нуль,
273К
– температура таяния льда
Т = t + 273

Самая высокая температура.

Она получена в центре взрыва термоядерной бомбы – около 300. 400 млн °C. Максимальная температура, достигнутая в ходе управляемой термоядерной реакции на испытательной термоядерной установке ТОКАМАК в Принстонской лаборатории физики плазмы, США, в июне 1986г., составляет 200 млн °C.

Самая низкая температура.

Абсолютный нуль по шкале Кельвина (0 K) соответствует –273,15°С или –459,67° F . Самая низкая температура, 2·10 –9 K выше абсолютного нуля, была достигнута в двухступенчатом криостате ядерного размагничивания в Лаборатории низких температур Хельсинкского технологического университета, Финляндия, группой учёных под руководством профессора Олли Лоунасмаа (род. в 1930 г.), о чём было объявлено в октябре 1989 г.

Напомним, что при изменении температуры тела изменяются его линейные размеры (при нагревании – расширяются, при охлаждении – сужаются). Это связано с поведением молекул. При нагревании увеличивается скорость движения частиц, соответственно, они начинают чаще взаимодействовать, и объём увеличивается.

Из этого можно сделать вывод, что температура связана с движением частиц, из которых состоят тела (это относится и к твёрдым, и к жидким, и к газообразным телам).

Движение частиц в газах является беспорядочным (так как молекулы и атомы в газах практически не взаимодействуют).

Движение частиц в твёрдых телах называется колебательным.

Таким образом, все частицы находятся в непрерывном движении. Это движение частиц называется тепловым движением (беспорядочное, хаотическое движение).

Это движение никогда не останавливается (до тех пор, пока у тела есть температура).

Подтвердил наличие теплового движения в 1827 году английский ботаник Роберт Броун, по имени которого данное движение называют броуновским движением.

На сегодняшний день известно, что самая низкая температура, которая может быть достигнута, составляет приблизительно -273 о С . Именно при такой температуре замирает движение частиц (однако не замирает движение внутри самих частиц).

Рассмотрим в заключении ещё один опыт – опыт французского учёного Гильома Амонтона, который в 1702 году изобрёл так называемый газовый термометр. С небольшими изменениями этот термометр дошёл и до наших дней.

Опыт Амонтона

Рис. 2. Опыт Амонтона

Возьмём колбу с водой и заткнём её пробкой с тонкой трубкой (см. Рис. 2). Если теперь нагревать воду, то за счёт расширения воды, её уровень в трубке будет повышаться. По уровню поднятия воды в трубке можно сделать вывод об изменении температуры. Преимущество термометра Амонтона состоит в том, что он не зависит от атмосферного давления.

На этом уроке мы рассмотрели такую важную физическую величину, как температура. Изучили способы её измерения, характеристики и свойства. На дальнейших уроках мы изучим такое понятие, как внутренняя энергия.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Актуальность: в природе мы являемся свидетелями тепловых явлений, но порой, не обращаем внимания на их сущность. Например, летом идёт дождь, а зимой снег. Образуется роса на листьях. Появляется туман. Зимой моря и реки покрываются льдом, а весной этот лед тает. Значение тепловых явлений в жизни человека очень велико. К примеру, незначительное изменение температуры организма означает заболевание. Температура внешней среды в любом точке Земли меняется как в течение суток, так и в течение года. Организм сам по себе не может компенсировать изменение температуры при теплообмене со средой, и нужно принимать какие-то дополнительные меры: т.е. надеть соответствующую одежду, строить жильё с учетом условий местности, где живут люди, ограничивать пребывание человека в среде, температура которой отличается от температуры организма.

Гипотеза: благодаря научным знаниям и достижениям созданы легкие, прочные малотеплопроводные материалы для одежды и защиты жилища, кондиционеры, вентиляторы и прочие приспособления. Это позволяет нам преодолевать трудности и многие проблемы, связанные с теплом. Но все же изучать тепловые явления необходимо, так как они имеют исключительно большое влияние на нашу жизнь.

Цель: изучение тепловых явлений и тепловых процессов.

Задачи: рассказать о тепловых явлениях и тепловых процессах;

изучить теорию тепловых явлений;

на практике рассмотреть существование тепловых процессов;

показать проявление этих опытов.

Ожидаемый результат: проведение опытов и изучение наиболее распространенных тепловых процессов.

Результат работы над проектом: подобран и систематизирован материал по теме, проведены опыты и блиц – опрос учащихся, подготовлена презентация, представлено стихотворение собственного сочинения.

Тепловые явления – физические явления, которые связаны с нагреванием и охлаждением тел.

Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация – все это примеры тепловых явлений.

Тепловое движение - процесс хаотичного (беспорядочного) движения

частиц, образующих вещество.

Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул. Молекулы или атомы вещества всегда находятся в постоянном беспорядочном движении.

Это движение обусловливает собой наличие в любом веществе внутренней кинетической энергии, которая, связана с температурой вещества.

Поэтому, беспорядочное движение, в котором всегда находятся молекулы или атомы, называется тепловым.

Изучение тепловых явлений показывает, что насколько в них уменьшается механическая энергия тел, настолько же увеличивается их механической и внутренней энергий, при любых процессах остаётся неизменной.

В этом заключается закон сохранения энергии.

Энергия не возникает из ничего и не исчезает никуда.

Она может лишь переходит из одного вида в другой, сохраняя своё полное значение.

Тепловое движение молекул никогда не прекращается. Поэтому любое тело всегда обладает какой-то внутренней энергией. Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов и не зависит от механического положения тела и его механического движения. Изменение внутренней энергии тела без совершения работы называется теплопередачей.

Теплопередача всегда происходит в направлении от тела с большей температурой к телу с меньшей температурой.

Существует три вида теплопередачи:

Тепловые процессы – разновидность тепловых явлений; процессы, при которых меняется температура тел и веществ, а также возможно изменение их агрегатных состояний. К тепловым процессам относятся:

Парообразование

Кристаллизация

Десублимация

Рассмотрим в качестве примера вещество, которое может находиться в трёх агрегатных состояниях: вода (Ж- жидкое, Т- твердое,Г- газообразное)

Нагревание – процесс повышения температуры тела или вещества. Нагревание сопровождается поглощением теплоты из окружающей среды. При нагревании агрегатное состояние вещества не изменяется.

Опыт 1: Нагревание.

Наберём воду из крана в стакан и измерим её температуру (25°C),

затем поставим стакан на теплое место (окно на солнечной стороне), и через некоторое время измерим температуру воды (30°C).

Подождав ещё некоторое время, я еще раз измерила температуру (35°C). Вывод: термометр показывает увеличение температуры сначала на 5°C, а потом и на 10°C.

Охлаждение – процесс, понижения температуры вещества или тела; Охлаждение сопровождается выделением теплоты в окружающую среду. При охлаждении агрегатное состояние вещества не изменяется.

Опыт 2: Охлаждение.Посмотрим как происходит охлаждение на опыте.

Из крана в стакан наберём горячую воду и измерим её температуру (60°C) затем этот стакан на некоторое время поставим на подоконнике, после чего измерим температуру воды и она стала равной (20°C).

Вывод: вода охлаждается и термометр показывает понижение температуры.

Опыт 3: Кипение.

С кипением мы каждый день сталкиваемся дома.

Нальём в чайник воду и поставим его на плиту. С начала вода нагревается, а затем происходит кипения воды. Об этом свидетельствует пар, выходящий из носика чайника.

Вывод: при кипении воды, пар из горлышка чайника выходит через маленькое отверстие и свистит и мы выключаем плиту.

Испарение – это парообразование , происходящее со свободной поверхности жидкости.

Испарение зависит от:

Температуры вещества (чем выше температура, тем интенсивнее испарение);

Площади поверхности жидкости (чем больше площадь, тем больше испарение);

Рода вещества (разные вещества испаряются с разной скоростью);

Наличия ветра (при наличии ветра испарение происходит быстрее).

Опыт 4: Испарение.

Если Вы когда-нибудь наблюдали за лужами после дождя, то Вы, несомненно, замечали, что лужи становятся меньше и меньше. Что произошло с водой?

Вывод: она испарилась!

Кристаллизация (отвердевание) – это переход вещества из жидкого агрегатного состояния в твердое. Кристаллизация сопровождается выделением энергии (теплоты) в окружающую среду.

Опыт 5: Кристаллизация. Чтобы обнаружить кристаллизацию, проведём опыт.

Наберём воду из крана в стакан и поставим в морозильную камеру холодильника. Через некоторое время происходит процесс отвердевания вещества, т.е. на поверхности воды появляется корка. Затем вся вода в стакане полностью превратилась в лед, то есть кристаллизуется.

Вывод: сначала вода охлаждается до 0 градусов, затем замерзает.

Плавление – переход вещества из твердого состояния в жидкое. Этот процесс сопровождается поглощением теплоты из окружающей среды. Чтобы расплавить твёрдое кристаллическое тело ему необходимо передать некоторое количество теплоты.

Опыт 6: Плавление.Плавление легко обнаруживается на опыте.

Достаём из морозильной камеры холодильника стакан с замёрзшей водой, который поставили мы. Через некоторое время в стакане появилась вода – лед начал таять. Спустя некоторое время весь лед растаял, то есть полностью перешел из твердого в жидкое.

Вывод: лёд с течением времени получает тепло от окружающей среды и со временем растает.

Конденсация –переход вещества из газообразного состояния в жидкое.

Конденсация сопровождается выделением теплоты в окружающую среду.

Опыт 7: Конденсация.

Мы вскипятили воду и поднесли к носику чайника холодное зеркало. Через несколько минут на зеркале четко видны капли конденсировавшегося водяного пара.

Вывод: пар оседая на зеркале превращается в воду.

Явление конденсации можно наблюдать летом, ранним прохладным утром.

Капельки воды на траве и цветах – роса – свидетельствуют о том, что водяной пар, содержавшийся в воздухе, конденсировался.

Сгорание – процесс сжигания топлива, сопровождающийся выделением энергии.

Эта энергия используется в различных

сферах нашей жизни.

Опыт 8: Сгорание. Каждый день мы можем наблюдать, как сгорает природный газ в горелке плиты. Это и есть процесс сгорания топлива.

Также процессом сгорания топлива является процесс сжигания дров. Поэтому, чтобы провести опыт по сгоранию топлива, достаточно только зажечь газовую

горелку или спичку.

Вывод: при сгорании топлива выделяется тепло, может появиться специфический запах.

Результат работы над проектом:в своей проектной работе я изучила наиболее распространенные тепловые процессы: нагревание, охлаждение, парообразование, кипение, испарение, плавление, кристаллизация, конденсация, сгорание, сублимации и десублимации.

Кроме того, в работе были затронуты такие темы, как тепловое движение, агрегатные состояния веществ, а также общая теория по тепловым явлениям и тепловым процессам.

На основе простейших опытов рассматривалось то или иное тепловое явление. Опыты сопровождаются демонстрационными картинками.

На основе опытов рассмотрено:

- существование различных тепловых процессов;

доказана актуальность тепловых процессов в жизни человека.

Блиц – опрос учащихся 9 класса.

Вопросы:

1. Что такое тепловые явления?

2. Приведите примеры тепловых явлений

3. Какое движение называют тепловым?

4. Что такое теплопроводность?

5. Агрегатные превращения – это…

6. Явление превращения жидкости в пар?

7. Явление превращения пара в жидкость?

8. Какой процесс называется плавлением?

9. Что такое испарение?

10. Назовите процессы, обратные нагреванию, плавлению, испарению?

Ответы:

1. Тепловые явления - физические явления, связанные с нагреванием и охлаждением тел

2. Примеры тепловых явлений: нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация

3. Тепловое движение – беспорядочное, хаотическое движение молекул

4. Теплопроводность – передача тепла от одной части к другой

5. Агрегатные превращения – это явления перехода вещества из одного агрегатного состояния в другое

6. Парообразование

7. Конденсация

8. Плавление – переход вещества из твердого состояния в жидкое. Этот процесс сопровождается поглощением теплоты из окружающей среды

9. Испарение – это парообразование, происходящее со свободной поверхности жидкости

10. Процессы, обратные нагреванию, плавлению, испарению – охлаждение, кристаллизация, конденсация

Результаты блиц - опроса:

1. Правильный ответ – 7 чел – 47%

Неправильный ответ – 8 чел – 53%

2. Правильный ответ –6 чел – 40%

Неправильный ответ –9 чел – 60%

3. Правильный ответ – 10 чел – 67%

Неправильный ответ – 5 чел – 33%

4. Правильный ответ –6 чел – 40%

Неправильный ответ – 9 чел – 60%

5. Правильный ответ – 8 чел – 53%

Неправильный ответ – 7 чел – 47%

6. Правильный ответ – 12 чел – 80%

Неправильный ответ – 3 чел – 20%

7. Правильный ответ – 8 чел – 53%

Неправильный ответ – 7 чел – 47%

8. Правильный ответ – 10 чел – 67%

Неправильный ответ – 5 чел – 33%

9. Правильный ответ – 13 чел – 87%

Неправильный ответ – 2 чел – 13%

10. Правильный ответ – 8 чел –53%

Неправильный ответ – 7 чел – 47%

Блиц-опрос показал, что ученики не достаточно знакомы с этой темой, и я надеюсь, что мой проект поможет им восполнить недостающие пробелы по данной теме.

Поставленная мною цель и задачи проектной работы выполнены.

Закончить свою работу хочу стихотворением, которое мы сочинили вместе с моим дедушкой.

Тепловые явления

Мы явления изучаем,

Про тепло познать желаем.

Мы живем в чудесном мире -

Все, как дважды два - четыре.

Выполняем мы работу,

Раскачав молекул роту,

Колем на дрова бревно -

Нам становится тепло.

Очень важная задача-

Тепло можно передать,

От воды нагретой взять.

Все тела теплопроводны:

Вода греет радиатор,

Воздух снизу вверх идет,

В дом тепло передает.

А оконное стекло

В доме бережет тепло.

В раме есть воздушный слой -

Для тепла стоит горой.

Он тепло не пропускает

И в квартире сохраняет.

Ну а днем, мы знаем сами,

Солнце даст тепло лучами…

Чтоб познать все свойства эти,

В дружбе жить с теплом на свете,

И на деле применить -

Надо ФИЗИКУ учить.

Список литературы


Старт в науке

Как устроен и работает терморегулятор электрического утюга

Всем знаком электрический утюг с терморегулятором. Это несложное устройство содержит все элементы автоматического регулятора.

Объектом регулирования является металлическое основание утюга, имеющее гладкую наружную поверхность (гладильная поверхность), а регулируемой величиной — температура гладильной поверхности.

В зависимости от рода ткани температура гладильной поверхности должна поддерживаться в определенных пределах. Так, для глажения синтетической ткани необходимо, чтобы температура подошвы утюга была равна 60 — 90°С, при глажении шелковой ткани — 100 — 130°С, а льняной — 160 — 200°С.

Устройство утюга

Исполнительным органом терморегулятора является электрический нагревательный элемент. При включении в электросеть он, нагреваясь, отдает некоторое количество теплоты основанию (подошве) утюга, при этом температура последнего повышается.

Если нагревательный элемент выключен, то температура основания утюга понижается, так как идет передача количества теплоты разглаживаемой ткани и окружающему воздуху. Этот процесс выступает как внешнее воздействие на объект регулирования.

Замыкание и размыкание цепи нагревательного элемента производятся контактной парой, включенной последовательно в эту цепь.

Контроль температуры подошвы утюга осуществляется с помощью специального датчика. Его действие основано на использовании биметаллической пластины, которая состоит из двух разнородных металлических слоев (например, железного и алюминиевого, железного и медного).

Известно, что различные металлы при нагревании расширяются неодинаково. Например, при одинаковом повышении температуры железной и алюминиевой пластин одной длины удлинение алюминиевой оказывается вдвое больше удлинения железной пластины.

При нагревании биметаллической пластины она изгибается в сторону слоя, который расширяется меньше. При этом изгиб пластины получается тем больше, чем больше изменение температуры.

Устройство утюга с автоматическим регулятором температуры

Устройство утюга с автоматическим регулятором температуры: (1 — подошва утюга; 2 — биметаллическая пластина; 3 — контактная пара; 4 — верхняя контактная пластина; 5 — нижняя контактная пластина; 6 — диск — задатчик значения температуры; 7 — поворотный клин задатчика)

В терморегуляторе утюга конец биметаллической пластины 2 прикрепляется к подошве 1, второй управляет подвижным контактом контактной пары 3, которая выполняет функцию органа сравнения (нуль-органа) терморегулятора.

С повышением температуры основания утюга нагревается и биметаллическая пластина. При этом она изгибается и ее свободный конец начинает перемещаться. Такое перемещение и есть информация об изменении температуры, которая поступает в нуль-орган в форме определенного перемещения верхнего контакта.

При остывании утюга пластина изгибается в обратную сторону и верхний контакт опускается. При его соприкосновении с нижним контактом нагревательный элемент (исполнительный орган) включается и температура утюга начинает повышаться. После соответствующего повышения температуры верхний контакт снова поднимается, и цепь нагревательного элемента разомкнётся. Утюг снова начнет остывать.

Устройство и принцип работы терморегулятора электрического утюга

Устройство и принцип работы терморегулятора электрического утюга

Температура подошвы утюга колеблется между верхним и нижним значениями, поэтому здесь можно говорить о поддержании определенной средней температуры, значение которой задается перемещением вверх или вниз нижнего контакта, что осуществляется поворотом диска в задатчика.

Нижний контакт укреплен на свободном конце плоской пружины. В нее упирается поворотный клин, прикрепленный к диску. При повороте диска в ту или другую сторону нижний контакт перемещается вверх или вниз.

Чем выше располагается нижний контакт, тем среднее значение температуры, поддерживаемое регулятором, будет больше. Таким образом, поворотом диска задатчика в нуль-орган вводится информация о том, какой должна быть температура основания утюга.

Терморегулятор для электрического утюга

Терморегулятор для электрического утюга

В рассмотренном примере имеются все элементы системы автоматического регулирования, кроме усилителя, в котором в данном случае нет необходимости, так как сигнал органа сравнения (замыкание или размыкание контактной пары) достаточен для включения или выключения исполнительного органа (нагревательного элемента).

Такой регулятор применяется также в бытовом электрическом масляном радиаторе, где он служит для поддержания задаваемой средней температуры поверхности, и в некоторых других бытовых и производственных установках.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Раздел, исследующий тепловые явления в физике, называется термодинамикой. При его изучении не учитывают молекулярное строение тел, а рассматривают оптимальные условия. Исследованием же процесса хаотичного перемещения атомов и молекул вещества занимается молекулярная физика. Именно она определяет природу движения, зависимость от температуры и закономерности.

Тепловые явления

Общие сведения

В обычной жизни человечество постоянно становится свидетелем тепловых явлений, происходящих в природе. Например, выпадение снега, дождя, образование росы. Все эти процессы связаны с температурой, а именно изменением тепловых движений. Любое вещество состоит из молекул или атомов, взаимодействующих между собой. Эти частицы находятся в постоянном беспорядочном колебании и движении. Характеризуется этот процесс кинетической энергией, которая содержится внутри тела.

Тепловые явления в физике

Как показали исследования, насколько уменьшается механическая энергия, настолько увеличивается внутренняя. Это правило назвали законом сохранения. То есть значение существующей энергии в природе — всегда постоянная величина. Именно поэтому тепловые колебания никогда не прекращаются. Количество внутренней энергии зависит от многих факторов, но особо значимым из них является температура. Если её значение изменяется без совершения работы, то говорят о прохождении теплопередачи.

Существует несколько типов процессов, сопровождающихся изменением температуры или переходом из одного агрегатного состояния в другое. В зависимости от происходящего действия к тепловым явлениям относятся:

К тепловым явлениям относятся

  1. Нагревание. Процесс повышения температуры.
  2. Охлаждение. Явление, при котором температура тела уменьшается.
  3. Парообразование. Переход вещества из текучего состояния в газообразное.
  4. Кипение. Частный случай парообразования, происходящий с высокой интенсивностью.
  5. Испарение. Фазовый переход из жидкого состояния в газообразное.
  6. Кристаллизация. Процесс образования твёрдого вещества из газов или расплавов.
  7. Плавление. Явление перехода материала из твёрдого состояния в текучее.
  8. Конденсация. Переход жидкого или твёрдого вещества в газообразное.
  9. Сгорание. Химический процесс превращения веществ в газ.
  10. Сублимация. Переход материала из твёрдого состояния в газообразное без стадии плавления.

Эти явления могут изучаться не только на уроках физики, но и на химии, металловедении. Они используются при разработке различных устройств, учитываются при проведении строительных работ. Так, при прокладке трубопроводов делается изгиб п-образной формы. Это позволяет избежать деформации и разрушения. Рельсы устанавливаются с зазором, а провода на столбах навешивают так, чтобы они свисали. Все эти мероприятия позволяют бороться с тепловыми явлениями, которые обязательно необходимо знать и учитывать.

Тепловой баланс

Равновесие — это термин, довольно часто используемый в физике. Под ним понимают состояние, в котором тело может находиться сколь угодно долгое время при условии, что на него не воздействуют внешние силы. Чтобы разобраться в тепловом равновесии, нужно рассмотреть пример.

Пусть есть два бруска, находящихся на некотором расстоянии друг от друга. Один из них нагрет, а второй, наоборот — охлаждён. Эти два тела можно привести в соприкосновение. При этом будет происходить одновременно два явления:

  • нагрев холодного тела;
  • остывание горячего бруска.

Тепловые явления

Через некоторое время под действием этих явлений установится устойчивое состояние. Горячий и холодный объектыпримут одинаковую температуру, то есть станут тёплым. Это состояние может сохраняться в замкнутой системе продолжительное время. Другими словами, наступит явление теплового равенства. Это один из важнейших законов природы, определение которого звучит так: в состоянии равновесия физическая система имеет одинаковую температуру в любой точке.

Степень нагрева или охлаждения характеризуется температурой. Определить её можно различными способами. Самый простой из них — использовать тактильные ощущения. Но это приблизительный метод — субъективный. При изменении температуры происходит хаотичное движение молекул, которое в конце концов приводит к диффузии.

Тепловые явления физика

При взаимном проникновении молекул веществ происходит заполнение ими промежутков в структуре тела. Можно провести простой эксперимент. Например, взять колбу и налить на её дно подкрашенную воду, а сверху — чистую. Через некоторое время граница между средами станет размытой. Это и есть простой пример произошедшей диффузии. Теперь если эту колбу нагреть или охладить, то можно будет заметить, что процесс смешивания происходит с разной скоростью. Так, при низкой температуре скорость движения молекул становится меньше по сравнению с высокой. Другими словами, снижается энергия движения.

Следовательно, чем выше температура тела, тем больше средняя кинетическая энергия (СКЭ) хаотичного перемещения его молекул. Таким образом, чтобы определить нагрев или охлаждение, нужно измерить СКЭ. Сделать это на опыте невозможно. Но как оказалось, от температуры зависят многих характеристики вещества. Одна из них — объём. На этом явлении и основана работа термометра, устройства, способного количественно определить температуру вещества.

Расширение тел, газов, жидкостей

Явление, характеризующее изменение геометрических размеров тела или объёма, получило название тепловое расширение. Большинство веществ при нагревании увеличивают свои размеры, но встречаются и исключения. Например, вода при температуре от 0 до 4 градусов Цельсия уменьшает свой объём. Как оказалось, тепловому расширению подвержены тела, находящиеся в любом агрегатном состоянии:

  • твёрдом;
  • жидком;
  • газообразном.

Физика тепловые явления

Твёрдые тела относятся к веществам, у которых явление расширения или сжатия имеет небольшую степень. Для того чтобы зарегистрировать изменения длины, используют специальный прибор. Но наглядно увидеть эффект можно и самостоятельно. Например, пусть имеется медная трубка, закреплённая одним концом в тиски, а второй лежит на подставке. Чтобы наблюдать изменение длины при нагреве, можно положить на подставку стекло, а на него — иголку. Если при нагревании трубка будет удлиняться, то игла начнёт катиться. Это и произойдёт при опыте.

Почему это происходит, объяснить довольно просто. Стержень удлиняется из-за увеличения расстояния между молекулами. То есть сначала частицы колеблются в состоянии равновесия с установившейся амплитудой. Когда происходит нагрев, то размах увеличивается. При этом размеры молекул остаются неизменным. Следовательно, возрастает расстояние между частицами — твёрдое тело удлиняется.

Физика 8 класс тепловые явления

Увидеть, как будет изменяться от температуры жидкость, можно, поместив колбу с водой в кипящий раствор. При этом водяной столб сначала опустится на некоторую величину, а потом будет набирать высоту. Происходит это явление из-за того, что первоначально нагрелась колба, а затем уже вода. В результате сначала объём сосуда увеличился, и вода как бы провалилась. Затем начинает прогреваться жидкость, и водяной столб возрастает. Из эксперимента можно сделать важный вывод — текучие вещества расширяются сильнее, чем твёрдые.

Аналогичный опыт можно провести для колбы, наполненной газом. Внизу неё налита подкрашенная жидкость, в которую вставлена трубочка, выходящая наружу через пробку. Если сосуд начать нагревать, то станет довольно заметно, как под влиянием тепла будет подниматься жидкость. То есть под действием увеличивающего давления газа происходит вытеснение воды из-за расширения.

Количественное описание расширения

Изменение линейных размеров тела с учётом температурной зависимости характеризуется коэффициентом теплового расширения. Это физическая величина, показывающая, как меняется объём при росте температуры на один градус по кельвину. При этом давление должно оставаться неизменным.

Каждое вещество в зависимости от своего строения характеризуется собственным значением коэффициента линейного расширения. Обозначают его с помощью буквы α, а для вычисления его значения используют формулу: α = ΔL / L * ΔT, где: ΔT — увеличение температуры, ΔL — изменение длины вещества, L — первоначальный размер. Это табличная величина.

8 класс тепловые явления

Таким образом, если необходимо узнать, какое значение примет линейное расширение, нужно воспользоваться выражением: ΔL = α * L * ΔT. Аналогичные формулы используют и для расчёта изменения объёма или площади тела. В простом случае, при котором коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, материал будет равномерно расширяться во все стороны.

Но, как показывает практика, не все вещества, особенно твёрдые тела, равномерно расширяются по всем направлениям. Причём не все материалы удлиняются одинаково. Самый яркий пример — вода. В интервале от 0 °C до +4 °C коэффициент α принимает отрицательное значение. Из-за этого природного эффекта моря и океаны никогда не промерзают до дна. Ещё одно аномальное свойство воды в том, что при превращении в лёд её удельная плотность уменьшается.

Изучаемые в 8 классе на физике тепловые явления жизненно важны для человечества. Так, любой инженер, составляя проект металлоконструкций, не может не учитывать возможного перепада температур в течение года. Например, при постройке мостов используется секционное строительство со специальными буферными зонами. Иначе зимой его может просто разорвать, а летом — вздыбить.

Чрезмерно высокая температура утюга испортит деликатные ткани в одно мгновение, а недостаточный нагрев сделает глажку утомительной и долгой. Избежать бытовых неприятностей поможет информированность о режимах термообработки, минимальной и максимальной температуре утюга и способах ее определения.

Температурные режимы: расшифровка точек на регуляторе температуры

Выбранный температурный режим должен соответствовать правилам ухода за вещью. Для удобства пользователя они нанесены на этикетках изделий в виде картинок. На графических правилах также повторяются точки: одна, две или три. Такие изображения не случайны, каждое означает определенный режим глажки утюга.



Режим единички значит, что температура нагрева позволяет гладить ткани, требующие деликатного ухода:

  • шелк,
  • шифон,
  • нейлон,
  • ацетат,
  • полиамид,
  • вискоза,
  • капрон.

На материал будет воздействовать t до 110 ˚С.



Для идеального разглаживания более термоустойчивых тканей потребуется установить колесико на 2 точки. Такой режим температуры подойдет для:

  • полиэстера;
  • шерсти,
  • полушерсти.

При такой t возможно паровое глаженье.



Максимального нагрева при глажке требуют ткани:

Термовоздействие достигает 200 ˚С. Процесс глажки облегчается благодаря возможности воздействия паром.

А что значат остальные обозначения о термообработке?

Прочие режимы представлены в таблице:


Гладить ткань можно

Глажка возможна только при температуре не выше 140˚С. Если на приборе нет обозначений — следует установить колесико по центру. Температура будет соответствовать 130-140˚С

Применять утюг для глажки запрещено

Для разглаживания вещей запрещено применять парообработку

Температурные режимы утюга в градусах

Терморежим утюгаМинимальная t (˚С)Номинальная t (˚С)Максимальная t (˚С)
7595115
⚫⚫150130155
⚫⚫⚫145175205

Нагрев бытового утюга в пределах подошвы может разниться на 10 ˚С.

До скольки градусов максимально нагревается утюг

Для тканей, наиболее плохо поддающихся глажке, необходимо применять максимальную температуру нагрева утюга в градусах, равную 205˚С. При этом скорость нагрева будет зависеть от вида материала, из которого изготовлена подошва утюга, и мощности электроприбора.

Скорость нагревания в зависимости от материала подошвы

Подошва изготавливается из:

Максимальные температуры в разных моделях могут разниться, поэтому прежде чем выбрать режим необходимо ознакомиться с инструкцией.

Если в утюге только один режим нагрева, нет функции разбрызгивания и парообработки, температура подошвы утюга будет 115 ˚С (±10).

Утюги с капельной системой немного горячее — около 155 ˚С.

Электроприборы с возможностью парообработки достигают температуры 175-205 ˚С.

Влияние мощности электроприбора

В бытовых моделях мощность колеблется от 800 до 2200 Вт. Модели, не оснащенные терморегулятором и увлажнителем, имеют боле низкую мощность — в пределах 400 Вт. Гладить ими гораздо сложнее, нагреваются они медленнее, быстро охлаждаются.

Совет! Для использования в быту подойдет утюг мощностью от 1500 до 2200 Вт. Любителям гладить большое количество вещей с максимальным комфортом подойдут модели с мощностью, приближенной к 2700-2800 Вт, однако стоит удостовериться, что проводка выдержит такое напряжения, и не включать несколько электроприборов одновременно.

Профессиональная многочасовая глажка, например, в прачечной или химчистке, потребует приобретение более дорогостоящего и мощного прибора — от 2800 Вт. Нагрев в таких моделях происходит максимально быстро, а паровой удар предельно мощный (около 230 г/мин).

Минимальная температура утюга

В утюгах без терморегулятора температура нагрева около 115 ˚С. Поскольку деликатный режим обработки изделия выбрать невозможно, следует начинать глажку с изнаночной стороны, увлажняя ткань.

При выравнивании вещи, не подлежащей глажке, даже выставленный на одну точку режим может ее испортить. Для безопасной обработки ткани необходимо:

  • увлажнить ее с пульверизатора и повесить для разравнивания;
  • воздействовать паром;
  • прогладить, расположив вещь между двумя слоями ткани: снизу — сухой, сверху — влажной.

Совет! Перед парообработкой необходимо удостоверится, что из сопел не выходят частицы ржавчины и капли воды, которые могут оставить разводы. Предотвратить загрязнение поможет съемная насадка на подошву утюга.

Температура пара в утюге

В бытовых моделях сила парового воздействия составляет около 20-25 г/мин. Более профессиональная техника позволяет воздействовать паром, поступающем с интенсивностью от 160 г/мин. При этом температура пара достигает 160-210 ˚С в зависимости от характеристик модели.

Как узнать температуру утюга

  1. Сбрызнуть утюг и дождаться шипения. Это значит, что температура выше 100 ˚С.
  2. Прогладить натуральную шерсть. Если ворсинки стали сухими и ломкими — температура близка к 105 ˚С, а если появился неприятный запах жженных волос — нагрев достиг отметки в 120 ˚С.

Чтобы не рисковать любимыми вещами, важно точно знать, какой температуры достигла подошва утюга. Лучше экспериментировать, а приобрести прибор с терморегулятором, следовать инструкции к использованию, изучать ярлыки на одежде перед глажкой. В случае подозрения на поломку — произвести замер t с помощью специального термометра и отремонтировать электроприбор по гарантийному талону.

Читайте также: