Что такое osc на вентиляторе

Обновлено: 24.04.2024

Правильно подобранная система вентиляции — не менее важный аспект качественной вентсети наряду с проектом и монтажом. От выбора агрегатов и комплектующих зависит срок эксплуатации всей системы и объем финансовых затрат на замену и ремонт. В этом обзоре рассказываем об основных компонентах и видах оборудования. Подробно рассматривали виды вентиляции помещений.

Какие существуют системы вентиляции?

Вентиляция — цикличный процесс удаления загрязненного воздуха из помещений и подача свежего. Эффективная вентиляция в помещении в настоящее время является одним из основных критериев, который учитывается при проектировании жилых и общественных зданий. Существует 3 вида вентиляционных установок: приточные, вытяжные и приточно-вытяжные. Коротко — о каждой:

  1. Приточная вентиляция отвечает за принудительную, механическую подачу воздуха в здание. Отток отработанного воздуха происходит за счет гравитации — естественного метода, работающего на разнице температур. Системы приточной вентиляции применяют в тех случаях, когда количество и уровень токсичности выделяемых в воздух загрязняющих веществ достигают значений предельно допустимой концентрации и требуют постоянной замены воздуха.
  2. Вытяжная вентиляция удаляет отработанныq воздух из помещений, в которых есть источники загрязнения. Комплектация и характеристики установки зависят от назначения объекта. Как правило, в производственных помещениях вытяжная вентиляция — компонент общеобменной вентсети, которая работает в масштабе всего помещения и создает равномерный воздухообмен. Приводит в порядок ключевые показатели: температуру, влажность, скорость циркуляции воздушных масс. Оптимально подходит для поддержания комфортного микроклимата и эффективно удаляет небольшие загрязнения.
  3. Приточно-вытяжная система вентиляции отличается от вытяжной тем, что вентиляторы не только удаляют воздух из здания, но и подают свежий наружный воздух. Данная система позволяет полностью контролировать воздухообмен. Это важно не только для качества воздуха, но и для снижения потерь тепла через вентиляцию. Принцип работы приточно-вытяжной вентиляции основан на системе автономных воздуховодов и вентиляторов.

Вентиляционное оборудование

Вентиляционные установки

Установки с точки зрения реализации делятся на 2 типа: наборные и моноблочные. На промышленных объектах чаще используются моноблочные системы вентиляции.

Моноблочная система вентиляции решает сразу 2 задачи, критично важные для любого промышленного объекта — комфортный микроклимат в помещении и непрерывный производственный цикл. Моноблочные системы имеют ряд преимуществ:

  • ключевые компоненты поставляются в сборке в шумоизолированном корпусе;
  • производитель несет ответственность за работоспособность всей системы в целом, что исключает простои. Они возможны при использовании наборных систем, где отказ одного компонента может привести к остановке производства;
  • моноблочные системы отличаются компактными габаритами и не занимают много места в помещении;
  • монтаж занимает несколько часов и не требует большого количества расходников;
  • данный вид установок проще обслуживать.

Внешний вид моноблочной установки системы вентиляции.

Альтернатива — наборные, которые собираются из отдельных компонентов и требуют тщательного проектирования.

Внешний вид наборной установки системы вентиляции.

Вентиляторы

Вентилятор – основа любой вентиляционной системы, планируя покупку вентиляционного оборудования, необходимо разобраться в специфике его устройства и действия.

По типу конструкции выделяют 5 модификаций вентиляторов:

  1. Осевые — самый востребованный вид оборудования. Конструкция моделей характеризуется простотой исполнения и малыми габаритами. Основные элементы: цилиндрический корпус, колесо с лопастями и привод. Принцип действия: вращающиеся лопасти захватывают воздух и выталкивают его вдоль оси крыльчатки. Перемещение воздушных потоков в радиальном направлении почти отсутствует. Производительность оборудования регулируется поворотом лопаток.
  2. Центробежные — агрегаты способны генерировать высокие давления и эксплуатироваться в жестких условиях. Конструкция оборудования включает следующие элементы: корпус, рабочее колесо, лопатки. В центробежных установках воздух поступает в осевом направлении, выталкивается – в радиальном. Воздушные массы под действием центробежных сил движутся в цилиндрическом корпусе.
  3. Диагональные — синтез двух типов вентиляторов: осевого и центробежного. Крыльчатка прибора имеет особую форму – строение рабочего колеса напоминает устройство барабана в радиальном вентиляторе. Лопатки крыльчатки расположены параллельно оси вращения.
  4. Диаметральные — состоят из удлиненного корпуса, оснащенного диффузором и патрубком, и рабочего колеса барабанного типа с наклонными лопатками. Осуществляется двукратное перемещение воздуха перпендикулярно оси вращения цилиндра.
  5. Безлопастные — их принцип работы кардинально отличается от рассмотренных выше модификаций. Основные элементы конструкции: рамка для втягивания и выброса воздушных масс, основание для фиксации рамки, мини-турбина, вмонтированная в основание вентилятора, мотор.

Модификация и характеристики вентиляторов позволяют подобрать оптимальное оборудование, как для бытового, так и промышленного применения. По способу монтажа различают:

  • стандартные – установка осуществляется на опору;
  • крышные – монтаж на кровле здания;
  • канальные – размещаются внутри вентиляционного воздуховода;
  • многозональные – модели, рассчитанные на присоединение к нескольким воздушным каналам.

Рекуператор

Рекуператор — сердце приточно-вытяжной вентиляции с функцией теплообмена. Это устройство отвечает за передачу тепла отработанного воздуха — свежему. Прибор забирает тепло из выходящего потока и передает его поступающему с улицы. В итоге температура свежего воздуха близка к комнатной и почти не требует нагрева. Это экономит наши расходы на электроэнергию. Подробнее о принципе работы вентиляции с рекуперацией мы писали в одной из статей нашего блога.

Внешний вид рекуператора в вентиляционной установке.

Вытяжные зонты

Вытяжные зонты предназначены для качественного удаления излишков тепла, пара, загрязняющих веществ. Эти агрегаты незаменимы на кухнях, в горячих цехах, на производстве. Загрязненный или нагретый воздух втягивается в зонт, проходит через фильтры и выводится из помещения. По типу конструкции и вытяжные зонты делятся на пристенные и островные. Пристенные зонты крепятся к стене непосредственно над оборудованием. Островные — размещаются над отдельно стоящим оборудованием и крепятся к потолку в любой локации помещения.

Внешний вид вытяжных зонтов в вентиляционной установке.

Фильтры

Задача системы фильтрации в системе вентиляции — обеспечить надлежащую чистоту приточного и вытяжного потока. Свежий и очищенный от пыли и других загрязнений воздух — залог здоровья и благополучия людей и защита оборудования в вентиляционной сети. В установках используются элементы предварительной (класс G), тонкой (класс F) и абсолютной очистки (класс H).

В последнее время тема использования интегральных схем для контроля скорости вращения вентиляторов в системах активного охлаждения компьютерных комплектующих и прочих электронных систем стала очень актуальна. Вследствие инициатив крупнейших игроков IT-рынка, вентиляторы, применяющиеся для охлаждения разнообразного оборудования более полувека, в последние годы претерпели существенные изменения. В этой статье мы рассмотрим причины и методы данного эволюционного движения.

Сегодняшний вектор развития электроники, особенно направленных на потребительский рынок устройств, задан на создание как можно более функциональных систем в минимально возможном форм-факторе. Это приводит к тому, что на одной и той же площади производители с каждым годом стараются умещать все больше транзисторов для увеличения функциональности и/или производительности чипов. Хорошим примером могут служить ноутбуки и карманные компьютеры, в которых процессорная и графическая мощь лишь возросли при уменьшении геометрических размеров и веса относительно первых представителей соответствующих классов. Естественно, освоение новых, все более тонких и совершенных технологических процессов производства помогает сдержать рост выделяемого при работе подобных полупроводниковых схем тепла, однако необходимость в его эффективном отводе полностью никуда не исчезает. Схожая ситуация возникает и с прочими устройствами, такими, например, как проекторы. Какие бы новые технологии ни внедрялись, без мощного источника света получить качественную картинку невозможно. А для стабильности работы, как и в случае с CPU/GPU и прочими микросхемами, тепло от ламп требуется отводить эффективно и, по возможности, бесшумно.

Действительно бесшумным методом отвода тепла можно считать лишь полностью пассивные системы, состоящие только из радиатора/теплотрубок. К сожалению, область применения таких СО ограничена: потолок по рассеиванию тепловой мощности этих изделий довольно низок, к тому же максимальная эффективность достигается лишь при большой площади рассеивания, а разместить достаточное количество ребер так, чтобы естественный приток воздуха их еще и равномерно омывал, бывает очень сложно, или даже невозможно. Хорошая альтернатива полностью бесшумным пассивным системам – активные кулеры, сочетающие в себе традиционные радиаторы с вентиляторами, создающими направленный воздушный поток. Однако присутствие движущихся частей означает наличие шума от работы. Кроме того, возрастает и общее энергопотребление, что может быть особенно важно при работе устройства от батареи с ограниченным зарядом. Наконец, с точки зрения надежности, добавление еще одного механического устройства несколько снижает общую отказоустойчивость.

В последние несколько лет популярность контроллеров вентиляторов ПК растет, и мы видим, что всё больше производителей корпусов, добавляют контроллеры вентиляторов в свои продукты. Оно и понятно – распространение мощных компонентов, таких как процессоры и видеокарты, ведёт к повышению температуры в вашей компьютерной системе, что требует установки дополнительных вентиляторов. Эта возросшая потребность в вентиляторах (плюс увлечение RGB) делает контроллеры вентиляторов весьма важной составляющей игровой сборки.

Когда дело доходит до сборки нового ПК, контроллер вентиляторов часто можно упустить из виду. Это достаточно справедливо, так как многие думают о том, чтобы отдать предпочтение новому кулеру вместо дополнительных вентиляторов.

Вместе с тем, увеличенные потоки воздуха и эстетичность, которые могут принести вентиляторы, обычно стоят того, чтобы начать использовать контроллер вентиляторов для организации и управления.

В этой статье мы расскажем о лучших контроллерах вентиляторов для ПК, о том, какой контроллер вентиляторов вам может понадобиться, и о нескольких вещах, которые следует учитывать перед покупкой.

Зачем покупать контроллер вентиляторов?

Вентиляторы необходимы для охлаждения вашей системы и поддержания работоспособности ваших компонентов. Наличие контроллера вентиляторов в вашей системе значительно облегчает мониторинг температуры. Большинство контроллеров позволяют вам вручную регулировать скорость вращения вентиляторов и добиться идеального баланса прохлады и тишины.

Что учитывать перед покупкой контроллера вентиляторов

Перед покупкой нового контроллера вентилятора или концентратора вентиляторов необходимо рассмотреть несколько вещей. Некоторые контроллеры вентиляторов имеют разные характеристики, количество каналов и, разумеется, программное обеспечение.

Эстетика контроллера вентиляторов

Большую часть времени контроллер вентилятора может быть скрытым. Иногда эти контроллеры вентиляторов проектируются так, чтобы они могли находиться внутри вашей системы и не выглядеть так, будто на вашем корпусе птицы свили гнездо.

Поддержка Pin

Различные контроллеры вентиляторов поддерживают разные типы контактов вентилятора; обычно это будет трёх- или четырёхконтактный.

3-контактные модели являются более сложными, чем старые 2-контактные модели, с двумя контактами для отрицательного и положительного тока и третьим контактом для контроля оборотов.

4-контактный вывод выполняет всё вышеперечисленное, но с добавлением дополнительного четвертого контакта, который предназначен для широтно-импульсной модуляции (ШИМ), работающей как переключатель, который постоянно включается и выключается, регулируя количество энергии на вентилятор.

Каналы

Количество каналов может варьироваться от контроллера к контроллеру. Важно убедиться, что вы получаете контроллер с нужным количеством каналов. Noctua в этом списке поддерживает только до трёх каналов, поэтому всегда следите за этим показателем!

Управление

Если какое-либо из этих устройств имеет элементы управления, они часто очень просты с ограниченными возможностями настройки. Программное обеспечение, такое как iCUE для Corsair Commander, превосходно и даёт вам реальную гибкость с конфигурациями. Другие варианты управления включают сенсорные экраны, такие как контроллер Thermaltake.

Лучший контроллер для вентиляторов компьютера

Corsair iCUE Commander Pro

Контроллер вентиляторов Corsair iCUE Commander Pro

Что нам понравилось:

  • Поддержка 3-контактных / 4-контактных разъёмов
  • 6 каналов контроля
  • 2 канала с контролем RGB

Что нас разочаровало:

Corsair предлагает контроллер вентилятора для ПК с Commander Pro. Этот контроллер вентилятора от Corsair является внутренней моделью, поэтому основное внимание уделяется функциональности. Он поставляется с шестью разъемами для вентиляторов и совместим с 3- и 4-контактными вентиляторами.

Что хорошего в Commander Pro, так это дополнительные разъемы для подсветки RGB с двумя каналами и четырьмя отдельными входами термисторов для более точного контроля температуры.

Что касается контроллеров вентиляторов, то у этой модели отличное качество сборки, а также впечатляющая универсальность. Этот фан-контроллер является отличным выбором.

Это, без сомнения, один из лучших контроллеров вентиляторов на рынке, но, к сожалению, цена отражает это. Если вы можете смириться с затратами, вы получите удовольствие, так как Commander Pro – чрезвычайно надежный продукт, обладающий множеством функций.

Phanteks Universal

Контроллер вентиляторов Phanteks Universal

Что нам понравилось:

  • Дистанционное управление с 3 скоростями
  • Магнитный корпус
  • Поддерживает 3-контактный и 4-контактный разъём
  • Низкопрофильный

Что нас разочаровало:

У Phanteks есть несколько отличных дополнений для вашей сборки, будь то кабель Riser или RGB-подсветка. Здесь нам предлагается контроллер вентилятора Phanteks Universal, и, как и Corsair Commander, это очень функциональный продукт. Его универсальность позволит вам полностью контролировать свои вентиляторы вручную с помощью пульта дистанционного управления. Вы сможете контролировать до восьми вентиляторов.

По дизайну этот контроллер вентилятора не выглядит как-то особенно. Phanteks Universal может быть установлен на любой металл благодаря своему магнитному корпусу, а дополнительный пульт дистанционного управления может быть прикреплен с помощью липучки.

Этот контроллер вентилятора предназначен для более крупных систем, и его низкопрофильная форма, безусловно, подходит для всех.

Noctua NA-FC1

Контроллер вентилятора Noctua NA-FC1

Что нам понравилось:

  • Режим NoStop, позволяет избежать ошибок BIOS
  • Включает в себя 3-х сторонний разветвитель
  • Компактный дизайн

Что нас разочаровало:

Noctua NA-FC1 – один из самых компактных контроллеров вентилятора в списке. NA-FC1 поддерживает до трёх 4-контактных ШИМ-вентиляторов и может работать в разных режимах. Если он установлен на ручную настройку, вы можете активно изменять скорости с помощью вертушка, или, если он установлен на автоматический режим, он работает в паре с материнской платой.

Этот маленький контроллер вентилятора обладает всеми преимуществами и может быть идеальным решением для тех, кому нужны незначительные возможности управления вентиляторами. Если этот уровень контроля над вашим ПК кажется недостаточным, он также поставляется с шестилетней гарантией.

Thermaltake Commander

Контроллер Thermaltake Commander

Что нам понравилось:

  • Ручная и автоматическая настройка
  • Сенсорный экран
  • Поддерживает DC (3-контактный) и ШИМ (4-контактный)
  • Отлично выглядит
  • Разумная цена

Что нас разочаровало:

Этот контроллер вентилятора является единственным в списке, для которого требуется отсек накопителя. Эти типы контроллеров вентиляторов менее востребованы в наши дни из-за быстрого снижения потребности в CD-ROM.

Commander FT оснащен 5,5-дюймовым сенсорным дисплеем для быстрой настройки вентилятора. Несмотря на то, что этот контроллер вентилятора, выглядит он очень высокотехнологичным, очень прост в использовании и поддерживает как 3-контактный, так и 4-контактный вентилятор. Коммандер поддерживает до пяти каналов и содержит все необходимые кабели для подключения до пяти вентиляторов.

Основными недостатками являются разъём питания Molex и необходимость в отсеке для дисков, но пока у вас есть место, ваша система будет выглядеть высокотехнологичной.

DeepCool FH-10

Контроллер вентиляторов DeepCool FH-10

Что нам понравилось:

  • Дистанционное управление с 3 скоростями
  • Магнитный корпус
  • Поддерживает DC (3-контактный) и ШИМ (4-контактный)
  • Низкопрофильный

Что нас разочаровало:

DeepCool заслуживает похвалы в этом списке благодаря очень доступному контроллеру вентилятора FH-10. DeepCool FH-10 будет работать с десятью 3-контактными и 4-контактными вентиляторами.

Дизайн контроллера FH-10 довольно элегантный, что позволяет устанавливать его спереди с минимальными эстетическими проблемами. Этот интегрированный концентратор вентиляторов может питать все десять вентиляторов, занимая только один 4-контактный разъём материнской платы.

Что отличает контроллер от DeepCool, так это небольшая гибкость в установке. Вы можете, конечно, прикрутить его к корпусу, используя предназначенные винтовые крепления, или альтернативно использовать комбинацию клея и липучки.

Какой контроллер вентилятора купить?

Выбор лучшего контроллера вентилятора ПК стал намного проще (я надеюсь). Очевидный победитель в списке – могучий Corsair Commander Pro, и это определяется его функциональностью, а также отличным программным обеспечением. Хотя Commander Pro не оснащен сенсорным дисплеем, как у Thermaltake Commander, он, безусловно, хорошо справляется со своей задачей и имеет два отдельных канала для RGB-подсветки.

В качестве более бюджетного, простого контроллера вентиляторов мы выбрали DeepCool FH-10 – это то, что нужно, так как он доступен по непревзойденной стоимости. Для более низкопрофильной установки с меньшим количеством вентиляторов Noctua NA-FC1 является надежной опцией.

Конечно, то, что вы выбираете, полностью зависит от ваших предпочтений и сборки, но будьте уверены, что независимо от того, какой контроллер вентилятора вы выберете из этого списка, вы не будете разочарованы.

Данный материал является попыткой упорядочить все накопившиеся у меня знания и наблюдения относительно организации охлаждения в закрытых компьютерных корпусах.


реклама

К сожалению простого и универсального рецепта, куда и как прикрутить вентиляторы не существует, аэродинамические процессы внутри корпуса проходят довольно сложные, к тому же сильно отличаются в зависимости от конфигурации и так просто на коленке их не рассчитать. Информация ниже может оказаться полезной не только для оптимизации охлаждения в готовом компьютере, но и при выборе нового корпуса.

п.1 Начну пожалуй со сравнения двух основных схем продува - с преобладанием выдувающих вентиляторов и нагнетающих. Существенных отличий между ними нет, обе способны обеспечить уверенную прокачку воздуха через корпус. Однако схема на выдувающих вентиляторах (так называемое отрицательное давление) сделает это чуточку эффективней, за счет более ламинарного (спокойного) движения воздушных масс. Нагнетающие в свою очередь создают завихрения, которые тормозят и перемешивают воздушный поток и негативно сказываются на производительности. С другой стороны, эти завихрения эффективнее снимают тепло с пассивных радиаторов и прочих греющихся элементов, не располагающих собственными вентиляторами. Таким образом улучшается охлаждение чипсета, оперативной памяти, NVMe накопителей.

п.2 Отбросив нюансы, отрицательное давление на мой взгляд предпочтительней, но это не повод отказываться от нагнетающих вентиляторов. Работая на оборотах ниже выдувных процентов на 20, они практически не будут добавлять шум, при этом заметно помогут им протягивать воздух через корпус, подталкивая его сзади. Или говоря научным языком - уменьшат аэродинамическое сопротивление системы "корпус".

п.3 Вопреки распространенному представлению, в корпусе нет четко выраженных потоков воздуха, работа любых вентиляторов внутри, прежде всего приводит к образованию областей низкого и высокого давления. Движение воздуха обусловлено его стремлением заполнить области с низким давлением (равно как покинуть области с высоким) и происходит это по пути наименьшего сопротивления. Сопротивление в свою очередь определяется влиянием соседних областей высокого и низкого давления, а также расстоянием до вентиляционных отверстий и их площадью. Рассмотрим эти процессы подробнее на примере стандартной двухвентиляторной видеокарты:

реклама


Как можно заметить, наряду со свежим воздухом снаружи корпуса, разряжение под видеокартой будет охотно заполняться её собственным подогретым выхлопом. В отсутствии других вентиляторов, помешать этому может лишь небольшая сила конвекции, тянущая теплый воздух вверх. Улучшить ситуацию призваны корпусные вентиляторы - либо нагнетающий со стороны передней панели, который будет уменьшать сопротивление тяги по этому направлению, либо выдувающий сверху, не давая отработанному воздуху затягиваться обратно:


При этом возникает другая проблема - излишняя перфорация корпуса вызывает паразитную тягу (на рисунке выделено розовым цветом), мешающую вентиляторам выполнять полезную работу, снижая их КПД. Её можно уменьшить, если соблюсти баланс притока и вытяжки (что не в каждом корпусе легко осуществимо), либо устранить, тщательно герметизируя все лишние отверстия.

реклама

п.4 Отдельное внимание следует уделить влиянию близрасположенных вентиляторов друг на друга, ведь это влияние может зачастую оказывать негативный эффект на их производительность. В качестве утрированного примера можно представить два одинаковых вентилятора, которые сложили бутербродом, направив в разные стороны. Они будут крутиться и шуметь, но при этом выполнять нулевую работу по перемещению воздуха. Естественно таких ситуаций в реальных сценариях использования не встречается, однако частичное проявление довольно распространено. Ниже приведен такой пример:


Аналогичные явления можно наблюдать и при вдуве, если один вентилятор установлен на передней панели, а другой на дне. А также с блоком питания, расположенным вентилятором вверх и видеокартой в нижних слотах, с неминуемым ростом температуры обоих компонентов. При перпендикулярной ориентации вентиляторов потери не столь критичны, но нужно учитывать, что во-первых, результирующая производительность будет ниже объема воздуха, который оба могут прокачать по отдельности. Во-вторых, желательно настраивать их на равную производительность, иначе более слабый вентилятор рискует оказаться в роли вентиляционного отверстия для другого, пропуская воздух в обратную сторону, что сводит смысл его применения на нет.

п.5 Основная задача к которой сводится организация вентиляции корпуса - обеспечить системы охлаждения каждого узла компьютера холодным воздухом в объеме равном их расходу (это сколько видеокарта и процессор прокачивают через себя). Хотя зачастую имеет смысл пойти на компромисс и позволить кулеру процессора частично использовать отработанный видеокартой воздух. Дальнейшее наращивание мощности вытяжки не дает почти никакой пользы. Чтобы добиться при этом минимального шума, важно соблюсти два условия - привести шум каждого вентилятора примерно к одному уровню и обеспечить им максимально возможный КПД. И все это полагаясь исключительно на силу своего воображения, моделируя в голове перемещение воздушных масс под воздействием перечисленных в статье факторов. Не самая простая задачка, но надеюсь многим читателям она покажется увлекательной.

реклама

п.6 Дополнения и примечания:

1) Чем большее сопротивление оказывает корпус, тем важнее роль герметизации паразитной перфорации и выходит на передний план такая характеристика вентиляторов (независимо от их ориентации), как создаваемое давление. Факторы увеличивающие сопротивление - глухие передняя панель и дно, массив корзин под жесткие диски в передней части, нагромождение кабелей. Трение воздуха о стенки корпуса тоже создает сопротивление, поэтому в широких корпусах воздуху двигаться немного легче.

2) При преобладании выдувающих вентиляторов, герметизировать в первую очередь нужно вредную перфорацию на крыше и задней стенке. При нагнетающих ровно наоборот.

3) Видеокарты нереференсного дизайна с традиционными вентиляторами формируют вертикальное движение воздуха, поэтому если увлекаться нагнетающими вентиляторами в верхней половине корпуса, они могут вступить в конфликт с СО видеокарты.

4) Чем слабее СО видеокарты, тем больший процент тепла будет рассеиваться пассивным образом с обратной стороны печатной платы. И тут могут подсобить завихрения от нагнетающих вентиляторов, но с учетом предыдущего пункта, работает это только с референсными турбинами.

5) Тягу через панель выводов материнской платы, при отрицательном давлении полностью не устранить, однако у современных плат в том месте установлен кожух, который направляет воздух через радиатор VRM, помогая его охлаждению.

6) Корпуса с единственным вытяжным вентилятором на задней стенке - не приговор для горячих систем, поскольку его КПД можно легко поднять почти до 100%. В противоположность этому, корпуса с верхним расположением БП - настоящее зло. Если поставить туда современный блок, который охлаждается низкоскоростным вентилятором, то в зависимости от оборотов заднего, тяга воздуха через БП рискует приблизиться к нулю, что может привести к разным неприятным последствиям.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

Вентиляторы охлаждения (они же — кулеры) играют важную роль в работе компьютера, предотвращая перегрев тех его компонентов, что подвергнуты сильному нагреву. Многие пользователи и не догадываются, что кулерами можно управлять, точнее — скоростью их вращения. Но это не всегда возможно.

Если речь о вентиляторах, подключенных непосредственно к материнской плате (например, кулер центрального процессора, корпусные вентиляторы или кулеры жестких дисков), то регулировка скорости их вращения должна поддерживаться на уровне материнской платы. Если же это кулер, охлаждающий видеокарту, тогда изменение скорости вращения должно поддерживаться самим графическим адаптером.

Управление вентиляторами, подключенными к материнской плате, стандартным способом предполагает изменение соответствующих параметров в BIOS. В случае с видеокартами это осуществляется путем внесения изменений в настройки драйвера. Нестандартные же способы предполагают использование специальных утилит. Некоторые из них разработаны самими производителями системной платы, видеокарты, ноутбука и т.д., другие — сторонними разработчиками. Рассмотрим популярные программы для управления вентиляторами компьютера.

Управление вентиляторами на ПК

Что нужно знать до экспериментов с кулерами?

Мы не зря назвали процесс контроля скорости вращения кулеров экспериментом, ведь последствия этой процедуры нельзя предсказать точно заранее. По умолчанию все вентиляторы компьютера настроены на работу в автоматическом режиме. Когда необходимо, скорость их вращения увеличивается или, наоборот, снижается. Все зависит от текущей температуры охлаждаемого компонента. Когда требуется отрегулировать скорость вращения кулеров вручную, то автоматику придется отключить. А это всегда риск.

Никогда точно неизвестно, как поведет себя вентилятор после манипуляций с его настройками — он может просто перестать вращаться или замедлиться настолько, что создаваемого им уровня охлаждения окажется недостаточным. И это не говоря еще о возможном выходе кулеров из строя, что обычно наблюдается при ручном увеличении скорости их вращения свыше значения по умолчанию (чем выше скорость, тем больше напряжения нужно подать на вентилятор, и если оно окажется слишком высоким, то устройство может и перегореть).

Но как показывает практика, негативные последствия экспериментов с управлением кулерами — довольно редкое явление, а выход из строя самих охлаждаемых компонентов компьютера — и подавно (спасибо функциям защиты устройств от перегрева, если они, конечно, не были каким-либо образом отключены).

SpeedFan

SpeedFan — одна из самых известных утилит для мониторинга в режиме реального времени скорости вращения и контроля охлаждающих вентиляторов и не только. Программа рассчитана на опытных пользователей, имеющих опыт в разгоне процессора и видеокарт, однако для управления кулерами особых навыков не требуется.

SpeedFan

1

Регулировка скорости вращения вентиляторов осуществляется путем изменения процентного значения напротив выделенных на изображении выше опций:

Open Hardware Monitor

Программа Open Hardware Monitor первоначально создана для мониторинга работы всех важных компонентов компьютера, включая скорость вращения как основных, так и дополнительных кулеров. Но у данной утилиты также присутствует функция, позволяющая вручную управлять вентиляторами.

Open Hardware Monitor

Для управления вентиляторами из программы Open Hardware Monitor:

Программа Open Hardware Monitor

Argus Monitor

Argus Monitor — еще одна программа для мониторинга с мощным функционалом контроля скорости вращения любых вентиляторов. Утилита имеет удобный и к тому же русскоязычный интерфейс, но она платная (30 дней можно использовать бесплатно).

Argus Monitor

Программа Argus Monitor

Настройки Argus Monitor

Откроется дополнительное окно с подвижным графиком (кривой). Путем перемещения точек кривой по вертикали настраивается скорость вращения кулера, а по горизонтали — задается температура, при которой программа автоматически установит заданную скорость. Всего таких точек — 7.

Управление кулером в Argus Monitor

Подобным образом можно автоматизировать и работу вентилятора видеокарты или любого другого.

NoteBook FanControl

Программа NoteBook FanControl предназначена для контроля вентиляторов у ноутбуков. Она бесплатна и предельно проста в использовании. Утилита способна контролировать скорость вращения всех кулеров, присутствующих в конструкции мобильного компьютера. Единственное условие — тот должен поддерживаться программой.

NoteBook FanControl

Последняя на момент написания обзора версия NoteBook FanControl имела поддержку более 200 различных моделей лэптопов производства Acer, Asus, Dell, Fujitsu, Gigabyte, HP, Lenovo, Medion, Sony, Toshiba и некоторых других компаний. Управление вентиляторами ноутбуков осуществляется в несколько простых действий:

Программа NoteBook FanControl

Активация контроля кулерами через NoteBook FanControl

MSI Afterburner

Программа MSI Afterburner предназначена, в первую очередь, для разгона (увеличения производительности) видеокарт от любых производителей (но только тех моделей графических адаптеров, что поддерживают данную возможность). Однако у нее также присутствует функция, позволяющая регулировать скорость вращения кулеров у поддерживаемых утилитой моделей видеокарт.

Пользоваться программой MSI Afterburner довольно просто:

MSI Afterburner

Полного списка поддерживаемых программой MSI Afterburner видеокарт, по всей видимости, не существует, но точно известно, что в него включены графические адаптеры AMD (ATI) и NVIDIA, начиная с Radeon HD 3000 и GeForce 8X00, соответственно.

Фирменные утилиты для управления вентиляторами

Все рассмотренные выше программы являются универсальными, т.е. они могут функционировать на разных компьютерах, независимо от производителя материнской платы, видеокарты или иных комплектующих. Но существуют и узкоспециализированные фирменные утилиты, способные управлять вентиляторами у устройств только определенного производителя. Мы не будем рассматривать их функционал, а только приведем их названия, поддерживаемое ими оборудование и ссылки для скачивания:

    . Программа служит для разгона, мониторинга и управления (в т.ч. кулерами) видеокартами производства ZOTAC. Впрочем, эта компания производит адаптеры на графических ядрах от NVIDIA. В список поддерживаемых моделей входят видеокарты серии GEFORCE GTX/GT, GEFORCE GTX 16, RTX 20 и RTX 30. По приведенной выше ссылке можно скачать программу ZOTAC FireStorm для конкретной серии видеокарт.

ZOTAC FireStorm

    . То же, что и в предыдущем случае, но для видеокарт производства Gigabyte. Последняя на момент написания обзора версия Aorus Engine поддерживала видеокарты на базе графических процессоров GeForce RTX 2070/2080/2080 Ti (но по ссылке выше также можно скачать более раннюю версию Aorus Engine для более ранних видеокарт от NVIDIA).

Aorus Engine

Easy Tune

Это, конечно, не весь перечень фирменных утилит для управления вентиляторами. Рекомендуем зайти на официальный сайт производителя установленной в компьютере материнской платы или видеокарты — возможно, там можно будет скачать программу для контроля кулеров этих устройств.

Остались вопросы, предложения или замечания? Свяжитесь с нами и задайте вопрос.

Читайте также: