Диэлектрическая сушилка принцип работы

Обновлено: 04.05.2024

К специальным видам сушки, как указывалось ранее, относятся: радиационная, диэлектрическая и сублимационная. Соответственно этим видам сушки различают терморадиационные, высокочастотные и сублимационные сушилки.

Терморадиационные сушилки. Сушка в них осуществляется за счет тепла, сообщаемого инфракрасными лучами. Указанным способом к материалу можно подводить удельные потоки тепла, приходящиеся на 1 м 2 его поверхности, в десятки раз превышающие соответствующие потоки при конвективной и контактной сушке. Поэтому при сушке инфракрасными лучами значительно увеличивается интенсивность испарения влаги из материала.

Однако при высушивании толстослойных материалов скорость сушки может определяться не скоростью подвода тепла, а скоростью внутренней диффузии влаги или требованиями, предъявляемыми к качеству высушиваемого материала: нарушение структуры, недопустимость коробления и т.п. В начальный период радиационной сушки под действием высокого температурного градиента влага может перемещаться вглубь материала до тех пор, пока под действием большей, противоположно направленной движущей силы (за счет градиента влажности) не начнется испарение влаги из материала. Поэтому терморадиационная сушка эффективна в Основном для высушивания тонколистовых материалов или лакокрасочных покрытий.

Терморадиационные сушилки по способу обогрева генераторов инфракрасного излучения подразделяют на сушилки с электрическим и газовым обогревом. В качестве электрических излучателей применяют зеркальные лампы, элементы сопротивления (панельные или трубчатые), керамические нагреватели - электрические спирали, запрессованные в керамической массе. Все эти нагреватели более сложны и инерционны, чем обычные ламповые, используемые в первый период применения терморадиационной сушки, однако они обеспечивают большую равномерность сушки.

Терморадиационные сушилки с газовым обогревом обычно проще и экономичнее сушилок с электрообогревом. При газовом обогреве излучателями являются металлические или керамические плиты, которые обогревают открытым пламенем или продуктами сгорания газов. В первом случае обогрев излучающей панели 1 (рис. 27, а) открытым пламенем газовых горелок 2 производится со стороны, обращенной к материалу, который перемещается на транспортере 3.

Лучшие условия труда и больший КПД достигаются с использованием второй схемы - при нагреве продуктами сгорания газов, движущимися внутри излучателя 1 (рис. 27, б). Газ и горячий воздух поступают в горелку 2. Продукты сгорания из камеры 6 направляются на обогрев излучающей поверхности. По пути они подсасывают с помощью эжектора 7 часть отработанных (рециркулирующих) газов для увеличения скорости потока теплоносителя и повышения коэффициента теплоотдачи от газов к поверхности излучения. Поступающий в горелку воздух вентилятором 5 прокачивается через воздухоподогреватель 8, в котором используется тепло отходящих газов.

Терморадиационные сушилки с газовым обогревом

Рис. 27. Терморадиационные сушилки с газовым обогревом

В современных радиационных сушилках с газовым обогревом эффективно используют излучающие насадки с беспламенным горением. Такие горелки могут быть использованы при сжигании низкокалорийного генераторного газа. Принцип беспламенного горения с излучающей насад- кой-слоем состоит в том, что смесь горючих газов и воздуха пропускают через пористую стенку, выполненную из монолитного куска огнеупора (шамота и динаса), со скоростью, превышающей скорость воспламенения газовоздушной смеси. Вначале горение протекает в обычных условиях, затем пламя постепенно уменьшается и при разогреве стенки до яркого накала горение концентрируется на ее внешней поверхности, которая испускает мощные потоки тепловой радиации.

Терморадиационные сушилки отличаются относительно высоким расходом энергии - 1,5-2,5 кВт-ч на 1 кг испаренной влаги, что ограничивает их применение.

Высокочастотные (диэлектрические) сушилки. Применение сушки в поле токов высокой частоты эффективно для высушивания толстослойных материалов, когда необходимо регулировать температуру и влажность не только на поверхности, но и в глубине материала. Таким способом можно сушить материалы, обладающие диэлектрическими свойствами (пластмассы, смолы, древесину и др.).

Высокочастотная сушилка (рис. 28) состоит из лампового высокочастотного генератора 1 и сушильной камеры 2. Из сети переменный ток поступает в выпрямитель 7, затем - в генератор, где преобразуется в переменный ток высокой частоты. Этот ток подводится к пластинам конденсаторов 3 и 4, между которыми движется на ленте высушиваемый материал. В сушилке материал высушивается сначала на ленте 5, а затем поступает на ленту 6, где досушивается. Под действием электрического поля высокой частоты ионы и электроны в материале, содержащем обычно некоторое количество электролита, например раствора соли, меняют направление движения синхронно с изменением знака заряда пластин конденсатора: дипольные молекулы приобретают вращательное движение, а неполярные молекулы поляризуются за счет смещения их зарядов. Эти процессы, сопровождаемые трением, приводят к выделению тепла и нагреванию высушиваемого материала.

Высокочастотная (диэлектрическая) сушилка

Рис. 28. Высокочастотная (диэлектрическая) сушилка

Изменяя напряженность электрического поля, можно регулировать величину температурного градиента между внутренними слоями материала и его поверхностью, т.е. регулировать скорость сушки, а также избирательно нагревать лишь одну из составных частей неоднородного материала.

В поле токов высокой частоты возможна быстрая (за счет усиленной термодиффузии влаги) и равномерная сушка толстослойных материалов. Однако сушка в поле высокой частоты для большинства материалов оказывается дороже конвективной в 3-4 раза. Кроме того, оборудование сушилок в поле высокой частоты более сложное и дорогостоящее в эксплуатации. Поэтому применение высокочастотной сушки ограничено специальными случаями, например конвейерной сушкой мелких дорогостоящих изделий, и требует технико-экономического обоснования в каждом конкретном случае.

Данный способ сушки позволяет сохранить основные биологические качества высушиваемых материалов и широко используется в фармацевтическом производстве при получении ферментов, антибиотиков, препаратов крови, иммуннобиологических препаратов и др.

Применительно к процессу сушки сублимация влажного материала - процесс сушки его в замороженном состоянии (сублимация льда, находящегося внутри материала).

Как известно, состояние воды можно определить тремя фазами: твердой, жидкой и газообразной. Фазы могут существовать как самостоятельно, так и совместно, точка одновременного существования трех фаз называется тройной точкой. Для воды она характеризуется температурой 0,0098 °С и парциальным давлением пара 4,58 мм рт.ст. Сублимация происходит при состоянии веществ ниже этой точки (см. диаграмму на рис. 29). Из диаграммы видно, что если нагревать вещество (линия FD) в твердом состоянии при постоянном давлении ниже давления тройной точки, то при достижении точки D произойдет испарение твердого тела, называемое возгонкой, или сублимацией. При обратном процессе (ED) при достижении точки D будет происходить кристаллизация пара без перехода в жидкое состояние.

Изменение состояния влаги в диаграмме p--t

Рис. 29. Изменение состояния влаги в диаграмме p--t

Ниже тройной точки вода будет находиться в твердом или парообразном состоянии. При низких давлениях создаются условия, при которых сопротивление окружающей среды настолько незначительно, что кристаллическая решетка льда распадается и переходит в пар без образования жидкой фазы. На линии лед-пар соотношение между давлениями и температурой такое, что твердая и газообразная фазы находятся в равновесии.

С увеличением разрежения падает и температура фазового перехода. Таким образом при подводе тепла в условиях глубокого вакуума можно создать большие разности температур между материалом и источником тепла по сравнению с обычной вакуумной сушкой.

Однако не следует считать, что сушка сублимацией возможна только в условиях глубокого вакуума. Еще в XVI-XVII вв. производилась сушка в замороженном состоянии в зимнее время на открытом воздухе кож и тканей. В данном случае разность температур tL - tM очень мала (близка к нулю), поэтому такая сушка была очень длительной и промышленного применения не получила.

Принципиальная схема сублимационной сушилки приведена на рис. 30. В сушильной камере 1, называемой сублиматором, находятся пустотелые плиты 6, внутри которых циркулирует горячая вода. На плитах устанавливают противни 7 с высушиваемым материалом. Между плитами и противнями имеется зазор, что способствует передаче тепла преимущественно радиацией. В фармацевтическом производстве высушивание проводят из ампул, пенициллиновых флаконов или стеклотары несколько большей емкости, в которые наливают подлежащий высушиванию раствор или суспензию. Чаще замораживание проводят в отдельных низкотемпературных морозильных камерах. Емкости с замороженным, подлежащим высушиванию материалом быстро загружают в охлажденную камеру сублиматора, который герметизируют и устанавливают необходимые параметры процесса. В процессе сублимации паровоздушная смесь из сублиматора 1 поступает в трубы конденсатора-вымораживателя 2, в межтрубном пространстве которого циркулирует хладоагент (рассол, охлажденный этанол и др.). Конденсатор включается в один циркуляционный контур с испарителем (аммиачным, фреоновым и др.) холодильной установки 4, и соединяется с вакуум-насосом 3, предназначенным для отсасывания неконденсирующихся газов и воздуха из сублиматора. В трубах конденсатора происходят конденсация и замораживание водяных паров. Для непрерывного удаления из конденсатора образующегося в нем льда устанавливают два конденсатора (на рис. 30 условно показан один), которые попеременно работают и размораживаются.

Принципиальная схема сублимационной сушилки

Рис. 30. Принципиальная схема сублимационной сушилки

Первой стадией сублимации является замораживание, и его следует проводить с учетом эвтектических температур, которые являются индивидуальными для каждого вещества. Эвтектическая температура - это наибольшая температура, при которой происходит кристаллизация (замораживание) подлежащего высушиванию материала. При указанной температуре находятся в равновесии жидкость и образующаяся при замораживании твердая фаза. Замораживание растворов, как и замораживание чистых веществ, происходит при постоянной температуре.

Установление эвтектической температуры лабильных препаратов является обязательным, так как позволяет определить допустимый уровень нагревания при высушивании препаратов.

Определяют эвтектические температуры различными методами: термическим, измерением сопротивления замороженного раствора и дифференциально-термическим.

В основе термического способа определения эвтектических температур лежит наблюдение за температурой материала в процессе медленного замораживания-оттаивания. На кривой изменения температуры оттаивания (нагревания) материала, замороженного ниже эвтектической точки, образуется плато, соответствующее времени, когда тепло, поступающее извне, не приводит к повышению температуры, а расходуется на плавление льда при данной эвтектической концентрации раствора. Получить такую площадку можно при достаточно большом содержании вещества в растворе, поэтому метод применим не во всех случаях.

Электрическое сопротивление наиболее точно характеризует состояние замороженного раствора. Сущность этого метода заключается в том, что одновременно измеряют температуру и электрическое сопротивление медленно нагреваемых растворов и препаратов, предварительно замороженных ниже эвтектических температур. Температура, при которой наблюдается переход электрического сопротивления от бесконечно большого к конечному (его можно измерить), и будет соответствовать эвтектической температуре.

Эвтектические температуры препаратов можно определить на установке, состоящей из следующих приборов: измерителя полных проводимостей мостового типа, автоматического потенциометра измерительной ячейки и термоизоляционной камеры с охладительной средой (рис. 31). Измерение эвтектических температур проводится следующим способом. Измерительную ячейку термостатируют при 293 К, мост устанавливают на нулевую точку. В ячейку помещают 0,005 кг исследуемого раствора препарата и замораживают. Когда температура исследуемого раствора достигнет 203 К охлаждение прекращают. Ячейку помещают в термостат, имеющий температуру 293 К, где раствор медленно нагревается. Мостом измеряют удельное электрическое сопротивление замороженного раствора, а потенциометром - температуру. Показания приборов снимают одновременна при определенном значении температуры. При этом определенной температуре соответствует определенное значение удельного сопротивления.

Схема экспериментальной установки для определения эвтектических температур

Рис. 31. Схема экспериментальной установки для определения эвтектических температур

При полном замораживании образца, представляющего собой ледяной блок, электрический ток не проходит и сопротивление в таком состоянии измерить не удается. При оттаивании блока сопротивление можно измерить и с повышением температуры оно возрастает. Точки, в которых наблюдается переход от линейной зависимости к криволинейной, будут соответствовать эвтектическим температурам исследуемых растворов.

Различные вещества характеризуются своими эвтектическими точками (температурами). Поэтому их учитывают при замораживании растворов, поскольку свойства конечного сухого продукта, высушенного сублимацией, будут изменяться в зависимости от условий замораживания. Режимы замораживали влияют на размеры полученных кристаллов замороженного продукта. Так, при медленном замораживании образуются крупные кристаллы, при быстром - мелкие. Из мелких кристаллов сушка идет быстрее, так как в этом случае отношение поверхности к объему материала будет больше. При сушке мелких кристаллов получается светлый, легко растворяющийся порошок, при медленном - осмоленный, хуже растворяющийся.

Механизм переноса влаги (в виде пара) от поверхности испарения при сублимационной или молекулярной сушке специфичен: он происходит путем эффузии, т.е. свободного движения молекул пара без взаимных столкновений их друг с другом.

Исследования и промышленная проверка подтвердили, что сублимационная сушка является наилучшим методом качественного консервирования при производстве целого ряда новых лекарственных средств, содержащих вещества биологического происхождения, выпуск которых с каждым годом все более расширяется. Поэтому использование термолабильных веществ для приготовления многих высокоэффективных препаратов биологического происхождения невозможно без сохранения их нативных свойств. Термолабильные вещества имеют различные структурные особенности, что необходимо учитывать при их сушке. Технологические параметры устанавливаются экспериментально и являются индивидуальными для каждого высушиваемого материала. Несмотря на большое количество накопленного материала по данному вопросу, общие закономерности по технологии сушки препаратов биологического происхождения, которые можно было бы использовать в промышленности, не найдены. Для каждого препарата их необходимо разрабатывать индивидуально.

В настоящее время общепризнанно, что при сублимационной сушке происходят некоторые изменения свойств исходного сырья, но они минимальны по сравнению с результатами консервирования ранее известными методами. Несмотря на многочисленность выполненных исследований, в изучении этого перспективного метода консервирования остается много неясных вопросов, решение которых возможно лишь в ходе дальнейшего изучения процесса накопления экспериментальных данных и теоретических представлений о нем. Удаление влаги из материалов должно проводиться при оптимальных условиях, которые находятся путем лабораторных исследований, а затем проверяются и переносятся в промышленные. Оптимальный режим должен обеспечивать минимальную продолжительность сушки и наилучшие технологические свойства высушенного препарата, эффективное использование соответствующего оборудования.

Сублимационная сушка применяется в лабораторных и промышленных масштабах в медицине и биологии для консервирования препаратов крови и кровезаменителей, биологических растворов, сывороток, микробных культур, в производстве антибиотиков, гормональных препаратов, а также в химико-фармацевтическом и пищевом производствах при выработке продуктов, превосходящих по качеству законсервированные другими способами. Сублимационное высушивание становится одним из основных методов подготовки для длительного хранения сырья растительного и живого происхождения и фармацевтических материалов.

На практике получили применение терморадиационные сублимационные сушилки с непрерывной загрузкой и периодической выгрузкой материала. Схема такой сушилки представлена на рис.32.

Рис. 32. Сублимационная установка с непрерывной загрузкой и периодической выгрузкой материала

Электромагнитные волны представляют собой движущееся электромагнитное поле - электрическое и магнитное поля, перпендикулярные друг к другу, которые вместе распространяются в пространстве. Изменение поля одного вида возбуждает в соседних областях пространства переменное поле другого вида, и электромагнитная волна продолжает распространяться. Спектр электромагнитных волн очень широк. На одном конце находится электричество в 50 Гц, а на другом - рентгеновское и гамма-излучение.

Для нагрева и сушки древесины применяются в основном электрические колебания промышленной частоты (индуктивный нагрев), радиоволны высоких и сверхвысоких частот (диэлектрический нагрев) и инфракрасное излучение (инфракрасный нагрев).

При этом способе в процессе сушки температура древесины выше, чем температура окружающей среды, в результате чего в штабеле создается положительный температурный перепад, который интенсифицирует процесс удаления влаги из материала. Продолжительность индукционной сушки в два раза меньше по сравнению с камерной сушкой пиломатериалов нормальными режимами. Однако себестоимость индукционной сушки примерно в два раза выше себестоимости камерной сушки. Этот способ не обеспечивает удовлетворительного качества высушенного материала: большая неравномерность высыхания материала, местные перегревы, большие внутренние напряжения.


Инфракрасный нагрев − это нагрев материалов электромагнитным излучением с длиной волны 2 мм - 760 нм (инфракрасное излучение). Инфракрасный нагрев основан на свойстве материалов поглощать определенную часть спектра этого излучения. При соответствующем подборе спектра испускания инфракрасного излучателя достигается глубинный или поверхностный нагрев облучаемого тела, а также его локальная сушка без нагрева всего объекта. Источником энергии при инфракрасном нагреве служат инфракрасные излучатели, состоящие из собственно источника энергии (нагретого тела) и отражателя. В зависимости от степени нагрева источников их условно подразделяют на низкотемпературные, нагреваемые до температур менее 700°С, среднетемпературные − от 700 до 1500°С, и высокотемпературные − выше 1500°С. В качестве источников применяют: трубчатые электрические нагреватели, зеркальные сушильные лампы; электрические нагреватели, состоящие из вольфрамовой спирали, помещенной в герметичную кварцевую трубку, наполненную инертным газом и парами йода, и др. Установки инфракрасного нагрева представляют собой камеры или туннели, размеры и формы которых соответствуют размерам и форме обрабатываемых изделий. Излучатели укрепляют на внутренней стороне установки; расстояние между ними и поверхностью нагреваемых предметов обычно составляет 15 - 45 см. В промышленности инфракрасный нагрев широко применяют для нагрева до сравнительно небольших температур низкими тепловыми потоками (сушка овощей, фруктов; лакокрасочных материалов, нагрев термопластических материалов перед формованием; вулканизация каучука и др.). Из-за малой глубины проникновения инфракрасных волн в древесину данный вид нагрева при сушке древесины широкого распространения не получил.

Радиоволны (с учетом особенностей их распространения, различных частот в пределах Земли и в космическом пространстве) используют для решения конкретных технических задач. Так, на ОНЧ осуществляют подводную и подземную радиосвязь, на НЧ, СЧ, ВЧ и ОВЧ - радиовещание; УВЧ, СВЧ, КВЧ используют в телевидении, радиолокации и мобильной связи; КВЧ и ГВЧ - в спектроскопии твердых и газообразных веществ. В таблице диапазон СВЧ соответствует сантиметровым волнам (Рисунки смотрите в PDF-версии журнала) . Однако на практике этим термином определяют диапазон с более широкими границами, который включает в себя волны от метровых до миллиметровых (300 МГц - 30 ГГц).

Диэлектрический нагрев − это нагрев диэлектриков в переменном электрическом поле радиоволн. При наложении переменного электрического поля в диэлектриках появляется ток смещения, вызванный их поляризацией, и ток проводимости, обусловленный наличием в диэлектрике свободных электрически заряженных частиц. Каждое вещество состоит из молекул, обладающих различными электромагнитными свойствами. Эти молекулы легко себе представить в виде овалов с положительным и отрицательным зарядом на противоположных концах. Кроме молекул, в веществе находятся свободные заряды, ионы и электроны. Когда электрическое напряжение отсутствует, диполи ориентированы хаотично и ионы не двигаются. Под воздействием электромагнитного поля диполи начинают вращаться, а ионы перемещаться в направлении поля. Если поменять направление поля, диполи начинают вращаться в другую сторону, и ионы тоже изменяют направление движения. Такая быстрая и часто повторяющаяся смена направления поля приводит к трению между частицами и, следовательно, к выделению тепловой энергии. Этот метод возможен только для нагрева твердых или жидких материалов, газообразные вещества не могут быть нагреты с помощью диэлектрического нагрева, т. к. между молекулами газа имеются значительные расстояния. Из всего вышесказанного ясно, что материалы в твердой и жидкой форме подвергаются нагреву, т. к. их молекулы находятся в близком контакте друг с другом, и поэтому может возникнуть трение. Выделяющаяся удельная мощность пропорциональна напряженности (Е) и частоте (f) электрического поля, а также диэлектрической проницаемости (e) и тангенсу угла потерь (tg δ) диэлектрика. Удельные диэлектрические потери, т. е. мощность, выделяемая в 1 м древесины под воздействием электрического поля, определяется формулой:

Сушка токами высокой частоты (ТВЧ) основана на нагреве диэлектриков и полупроводников в быстроизменяющемся электрическом поле. Такое поле, воздействуя на диэлектрик, вызывает вращательное и колебательное движение его молекул.

Возникающее при этом молекулярное трение преобразуется в теплоту, количество которой пропорционально частоте тока.

Установка для нагрева материала токами высокой частоты состоит из генератора ТВЧ 1 (рис. 1) и конденсатора 2 между пластинами которого располагается нагреваемый материал 3. Из всей мощности Nобщ, которая подводится к конденсатору, часть - активная мощность Nакт - поглощается материалом, преобразуясь в теплоту. Оставшаяся же часть мощности (Nобщ - Nакт ) не образует тепловой энергии и обозначается как реактивная Np. Отношение активной мощности к реактивной характеризует потерю энергии и выражается коэффициентом, называемым тангенсом угла потерь tg b = Nакт / Np. Величина использованной полной энергии во многом зависит от диэлектрической проницаемости материала. Поэтому вся потеря электрической энергии при нагреве диэлектриков ТВЧ обычно выражается как фактор потерь. Абсолютная диэлектрическая проницаемость материала равна произведению относительной диэлектрической проницаемости Eотн и электрической постоянной Eо=8,85 пФ/м.

Рис. 1. Принципиальная схема установки для нагрева материала ТВЧ

Таким образом, основными характеристиками материала, определяющими его нагрев ТВЧ, являются тангенс угла потерь и диэлектрическая проницаемость материала. Опыт показывает, что все материалы, для которых фактор потерь больше 0,01/ Eо, могут быть нагретыми ТВЧ. Особенно это относится к влажным материалам, так как вода имеет очень высокую диэлектрическую проницаемость (Eотн = 81). Быстрое образование большого количества тепла в местах нахождения в материале влаги является отличительной особенностью нагрева в электрическом поле высокой частоты. С понижением влажности материала фактор потерь уменьшается. На практике это означает, что при сушке плоских материалов преимущественно будут нагреваться более влажные участки, пока не произойдет выравнивание содержания влаги по всему объему. Величина фактора потерь зависит также от температуры, физико-химических свойств и особенностей его структуры, от частоты изменения электрического поля и его напряженности. При заданном факторе потерь тепловая мощность материала-диэлектрика определяется частотой тока и квадратом напряженности поля. Активная мощность для единицы объема материала может быть определена по формуле

где Р - удельная активная мощность, Вт/м3; 2пf - круговая частота тока, Гц; Eабс - диэлектрическая постоянная материала, Ф/м; Е - напряженность электрического поля, В/м.

Стремление увеличить активную мощность приводит к применению ТВЧ и полей большой напряженности. Однако необходимо иметь в виду, что существует предел напряженности электрического поля в диэлектрике, определяемый пробивным градиентом, т. е. напряженностью поля, приводящей к пробою (разрушению) диэлектрика. Наиболее рационально вести нагрев диэлектрика с помощью токов повышенной частоты при относительно невысокой напряженности поля.

При сушке в электрическом поле высокой частоты нагрев материала происходит изнутри. Вследствие этого температурный градиент, градиент давления и влажности направлены из внутренних слоев материала к его поверхности. Механизм процесса сушки зависит от интенсивности нагревания. При температуре материала ниже 60 °С перемещение тепла в нем происходит под действием градиента температуры, усиленного теплом внутреннего фазового превращения. При более интенсивном нагреве скорость фазового превращения внутри материала превышает скорость переноса массы пара, поэтому в материале возникает градиент давления. Величина избыточного давления зависит от температуры материала, его структуры, мощности нагревателя и других факторов. Повышенное значение величины избыточного давления обусловливает в основном высокую интенсивность сушки.

Кинетика процесса сушки ТВЧ та же, что и при сушке другими способами. Различным является распределение температуры, содержания влаги и давления внутри материала. Вместе с тем температуру материала можно регулировать в широких пределах независимо от температуры окружающего воздуха. Это является очень важным преимуществом сушки ТВЧ. На практике становится возможным подобрать такие режимы процесса, при которых градиенты влажности внутри материала очень малы.

Сушка ТВЧ нашла применение в различных отраслях промышленности. Особенно эффективно оказалось использование ее в производстве рулонных материалов: тканей, волокон, ниток и др. Первые опыты по сушке ТВЧ кожевенного полуфабриката, проведенные на ленинградском кожевенном заводе им. Радищева, показали, что, применяя ТВЧ, основную сушку кожи для низа обуви можно проводить примерно за 2,5-3 ч; при этом температура ее повышается до 65-70 °С. Кожа получается удовлетворительного качества, а выход ее по площади примерно такой же, как и при конвективной сушке. Постоянная по величине напряженность электрического поля во время сушки приводит к дальнейшему повышению температуры полуфабриката, в связи с чем возникает опасность его перегрева. Чтобы не допустить этого, рекомендуется по мере высушивания полуфабриката постепенно снижать напряженность поля.

Применение ТВЧ позволяет проводить сушку полуфабриката в сушилках проходного типа. Влажный полуфабрикат передвигается на конвейерной ленте (рис. 2) между электродами, которые выполнены в виде стержней и сдвинуты относительно друг друга. Такая форма и расположение электродов приводит к образованию электрических полей в виде гирлянд. Считают, что при сушке кожевенного полуфабриката действие подобного поля наиболее эффективно. Камера, в которой проводится сушка, должна быть по возможности закрытой, чтобы снижались потери энергии. Удаление образующихся водяных паров осуществляется с помощью отсасывающего устройства. Для охлаждения электроды обдуваются воздухом. Длина сушилки определяется скоростью движения ленты конвейера и мощностью применяемого генератора ТВЧ.

Рис. 2. Схема расположения электродов по длине конвейера в сушилках ТВЧ:
1- высокочастотный генератор; 2 - регулирующий конденсатор; 3- стержни-электроды;4 - ленточный конвейер

В сушилках, предназначаемых для сушки полуфабриката хромового дубления из шкур крупного рогатого скота повышенного развеса, мощность генератора должна быть около 100 кВт, скорость транспортирования от 0,8 до 8 м/мин в зависимости от степени высушивания полуфабриката. Кожи, высушенные при этих условиях, получаются очень мягкими и гладкими. Величина усадки их по площади при сушке до влажности 11 % составляет примерно 10%. Однако при сушке полуфабриката в растянутом (фиксированном) состоянии выход кожи по площади значительно увеличивается.

Исследования показали, что в условиях сушки ТВЧ отсутствует какая-либо миграция водорастворимых веществ к поверхности высушиваемого полуфабриката. Тем не менее полуфабрикат после проведения крашения и жирования должен подвергаться очень тщательной промывке. Это объясняется тем, что повышенное содержание в полуфабрикате электролитов резко замедляет сушку.

Основной причиной, сдерживающей применение ТВЧ для основной сушки кожевенного полуфабриката, является высокая стоимость затрачиваемой энергии. В этом случае стоимость энергии на испарение 1 кг воды в три раза выше, чем при сушке внаклейку, и почти в четыре раза выше, чем при вакуумной сушке. В связи с этим рекомендуется сушку ТВЧ комбинировать с сушкой другими способами и использовать тогда, когда влажность полуфабриката менее 40%. Такое комбинирование имеет целью не столько удалить при подсушке то или иное количество влаги, сколько равномерно распределить ее в полуфабрикате перед проведением тяжки.

Представляет интерес организация поточной линии (рис. 3), включающей проходные вакуумные сушилки типа "Автовак", проходные сушилки ТВЧ и проходные тянульные машины "Моллиса".

Рис. 3. Схема поточной линии:
1 и 2- сушилки ТВЧ; 3- проходные тянульные машины

После сушки в сушилке "Автовак" полуфабрикат, влажность которого составляет 30%, поступает в сушилку ТВЧ для выравнивания распределения влаги по объему дермы (кондиционирования), что необходимо для проведения последующей тяжки. Одновременно полуфабрикат подсушивается до содержания влаги 25%. После первой тяжки полуфабрикат снова кондиционируется и поступает на вторую тяжку. На этом участке линии обработка осуществляется без участия рабочих.

Для высушивания толстослойных материалов, когда необходимо регулировать температуру и влажность не только на поверхности, но и в глубине материала, в ряде случаев эффективно применение сушки в поле токов высокой частоты. Таким способом сушат пластические массы и другие материалы, обладающие диэлектрическими свойствами.


ысокочастотная сушилка (рис.145) состоит из высокочастотного генератора 1 и сушильной камеры 2. Переменный ток поступает из сети в выпрямитель 7, а затем в генератор, где преобразуется в переменный ток высокой частоты. Этот ток подводится к пластинам конденсаторов 3 и 4, между которыми движется на ленте высушиваемый материал. Сушилка, как правило, имеет две ленты 5 и 6, на которых последовательно высушивается материал. Под действием электрического поля высокой частоты ионы и электроны в материале меняют направление движения синхронно с изменением знака заряда пластин конденсатора; дипольные молекулы приобретают вращательное движение, а неполярные молекулы поляризуются за счет смещения их зарядов. Эти процессы, сопровождаемые трением, приводят к выделению тепла и нагреванию высушиваемого материала.

Изменяя напряженность электрического поля, можно регулировать величину температурного градиента между внутренними слоями материала и его поверхностью, т.е. регулировать скорость сушки, а также избирательно нагревать лишь одну из составных частей неоднородного материала.

В поле токов высокой частоты возможна быстрая (за счет усиленной термодиффузии влаги) и равномерная сушка толстослойных материалов. Однако сушка этим способом требует высоких удельных расходов энергии до 2,5 – 5 кВт ч на кг испаренной влаги. Кроме того, оборудование сушилок является более сложным и дорогим в эксплуатации. Поэтому применение высокочастотной сушки рентабельно только для сушки дорогостоящих диэлектрических материалов.

8.7.14. Сублимационные сушилки

Сушка материалов в замороженном состоянии, при которой находящаяся в них в виде льда влага переходит в пар, минуя жидкое состояние, называется сублимационной или молекулярной. Сублимационная сушка (рис.146) проводится в глубоком вакууме при остаточном давлении 1,0 – 0,1 мм рт.ст. и при низких температурах.


сушильной камере 1, называемой сублиматором, находятся пустотелые плиты 2, внутри которых циркулирует горячая вода. На плитах устанавливаются противни 3 с высушиваемым материалом, имеющие снизу небольшие бортики. Поэтому противни не соприкасаются поверхностью днища с плитами 2 и тепло от последних передается материалу, преимущественно тепловой радиацией. Паро-воздушная смесь из сублиматора 1 поступает в трубы конденсатора-вымораживателя 4, в межтрубном пространстве, которого циркулирует хладагент, например аммиак. Конденсатор включается в один циркуляционный контур с испарителем аммиачной холодильной установки и соединяется с вакуум насосом, предназначенным для отсасывания неконденсирующихся газов и воздуха. В трубах конденсатора происходит конденсация и замораживание водяных паров. Для более удобного удаления льда обычно используют два конденсатора, которые попеременно работают и размораживаются.

Процесс удаления влаги из материала протекает в три стадии. При снижении давления в сушильной камере происходит быстрое самозамораживание влаги и сублимация льда за счет тепла, отдаваемого самим материалом (при этом удаляется до 15 % всех влаги), удаление основной части влаги сублимацией, что соответствует периоду постоянной скорости сушки, и удаление остаточной влаги тепловой сушкой.

Механизм переноса влаги в виде пара от поверхности испарения при сублимационной сушке специфичен: он происходит путем эффузии, т.е. свободного движения молекул пара без взаимных столкновений их друг с другом.

Сушка проводится при осторожном и мягком обогреве замороженного материала водой, потому что количество передаваемого тепла не должно превышать его расхода на сублимацию льда без его плавления. Непосредственно на сушку сублимацией расходуется умеренное количество тепла низкого потенциала, но суммарный расход энергии и эксплуатационные расходы больше, чем при любом другом способе сушки, исключая сушку в поле токов высокой частоты.

Применение этого дорогостоящего способа сушки целесообразно только в тех случаях, когда к высушиваемому продукту предъявляют высокие требования в отношении сохранения его свойств при длительном хранении. Путем сублимации сушат главным образом ценные продукты, не выдерживающие обычной тепловой обработки и требующие продолжительного сохранения их биологических свойств (пенициллин и некоторые другие медицинские препараты, плазма крови, высококачественные пищевые продукты и биологически активные пищевые добавки).

Читайте также: