Индукционный парогенератор принцип работы

Обновлено: 27.04.2024

Из нашего ассортимента вы гарантированно сможете подобрать индукционныйпарогенератор, оптимально подходящий для ваших задач. Мы оснащаем оборудование всеми необходимыми опциями для автоматизации работы, увеличения срока службы котла, снижения потребления электроэнергии - системы водоподготовки, системы возврата конденсата, плавное регулирование мощности, исполнение из нержавеющей стали, мобильное переносное исполнение и многое другое.

ГАРАНТИРУЕМ НАШИМ ПОКУПАТЕЛЯМ:

◆ Широкий выбор индукционных парогенераторов по ценам производителя;

◆ Постоянное наличие базовой линейки оборудования;

◆ Действительно быструю доставку на объект;

◆ Грамотный подбор модели и опций под ваши требования.

ПРЕИМУЩЕСТВА ИНДУКЦИОННЫХ ПАРОГЕНЕРАТОРОВ

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИНДУКЦИОННЫХ ПАРОГЕНЕРАТОРОВ ТИТАН

Возможно изготовление парогенераторов специального исполнения, с возможностью регулируемого рабочего давления до 12 бар и температурой пара до 188 ° С.

КУПИТЬ ИНДУКЦИОННЫЙ ПАРОГЕНЕРАТОР

ПРИНЦИП РАБОТЫ ИНДУКЦИОННОГО ПАРОГЕНЕРАТОРА

В индукционном парогенераторе для нагрева воды используется индуцированный ток 8000 - 9000А в полости медной трубы, являющейся вторичной обмоткой индуктора. Расчет необходимого количества теплоты до достижения точки кипения определяется аналогично расчетам обычного жаротрубного парогенератора.

Механизм парообразования в трубе индукционного парогенератора, в сравнении с обычным жаротрубным, отличается тем, что наряду с давлением и температурой на воду дополнительно воздействует переменное магнитное поле и реактивная энергия, которая ослабляет силы межмолекулярного сцепления жидкости и возбуждает колебание молекул. Всё это значительно повышает КПД индукционного парогенератора, в результате чего экономия электроэнергии составляет 2-3 раза, по сравнению с аналогичными электрическими парогенераторами .

Мощность парогенератора определяется количеством индукторов (модулей). Если уменьшается потребление пара, то давление пара в общем трубопроводе парогенератора возрастает и тогда индуктора последовательно отключаются, а если индуктор в парогенераторе один, то он автоматически переходит в повторно кратковременный (ждущий) режим работы или полностью отключается, когда прекращается отбор пара, что дополнительно позволяет экономить электроэнергию.

Изобретение относится к устройствам преобразования электрической энергии в тепловую и для создания теплообмена, в частности к прямоточным электрическим парогенераторам. Оно может быть использовано при нагреве жидкостей посредством теплообменников, например, в системах разогрева ионообменных растворов в химической промышленности, крекинга нефтепродуктов, газификации углеводородного топлива, дезинфекции перегретым паром, а также в других областях, где требуется безопасный нагрев и испарение текучих сред. Устройство в основном предназначено для получения водяного пара с закритическими параметрами, а также для получения перегретого водяного пара с температурой выше температуры насыщения.

Известен также прямоточный электрический парогенератор [Патент RU № 2691726, МПК H05B 6/10, опубл. 18.06.2019], принятый за прототип, включающий плоский ферромагнитный сердечник со стержнями, первичные обмотки, расположенные в виде катушек на стержнях и электрически изолированные от них, средства принудительной подачи воды во внутреннюю полость общей трубчатой вторичной обмотки, имеющей подводящий и отводящий патрубки и расположенной в магнитном поле изолированно от первичных обмоток и охватывающую все стержни ферромагнитного сердечника так, что вокруг каждого стержня образует замкнутые витки, расположенные в межкатушечном пространстве поочередно друг над другом и соединенные электрически неразъемно наружно в плоскости диаметра трубы, параллельного вектору магнитной индукции стержня, а на периферии в межтрубном пространстве между витками установлены дистанционные цилиндрические элементы, наружно соединенные с витками неразъемным соединением в плоскости диаметра труб, параллельного вектору магнитной индукции стержней, датчик температуры, установленный на участке трубы трубчатой вторичной обмотки, близком к отводящему патрубку, датчик давления пара, расположенный на отводящем патрубке, наружную перемычку, состоящую из двух параллельных шин, расположенных перпендикулярно виткам трубчатой вторичной обмотки и электрически присоединенных к начальному и конечному виткам на расстоянии друг от друга, кратном радиусу трубы трубчатой вторичной обмотки, причем длина трубчатой вторичной обмотки кратна радиусу трубы трубчатой вторичной обмотки. В данном устройстве решается задача стабилизации процесса парообразования во внутренней полости вторичной трубчатой обмотки индуктора прямоточного электрического парогенератора с тем, чтобы обеспечить надежный контроль параметров получаемого на выходе насыщенного водяного пара, в том числе контроль температуры.

Общим недостатком известных прямоточных электрических индукционных парогенераторов, включая прототип, является резкое падение надежности работы вторичной трубчатой обмотки при повышении давления пара и особенно температуры нагрева как в закритической области давлений пара, так и в докритической при производстве перегретого пара. Это напрямую связано с конструкцией вторичной трубчатой обмотки и является препятствием для создания высокотемпературных устройств, особенно, индукционных пароперегревателей. Для достижения максимального КПД в известных конструкциях для вторичной трубчатой обмотки используются металлы с высокой электро- и теплопроводностью, но такие металлы не обладают жаропрочностью и жаростойкостью, необходимыми при работе на высоких температурах нагрева. Например, стойкость медной вторичной трубчатой обмотки в связи с низкой жаропрочностью меди снижается на порядок при работе устройства в режиме производства перегретого сухого пара по сравнению с режимом производства насыщенного пара даже при докритическом давлении. С другой стороны, удельное электрическое сопротивление жаропрочных металлов намного выше удельного электрического сопротивления меди, и это обстоятельство является непреодолимым препятствием для использования жаропрочных металлов в индукционной технологии генерации водяного пара. Таким образом, создание электрического индукционного пароперегревателя возможно в данном случае только путем радикального изменения конструкции нагревательной вторичной трубчатой обмотки при сохранении ее низкого электрического сопротивления.

Технической задачей настоящего изобретения является повышение эксплуатационной надежности автономного прямоточного электрического пароперегревателя для производства пара высокой температуры и высокого давления на основе индукционной технологии, а также расширение области применения данного устройства.

Техническая задача достигается за счет того, что электрический пароперегреватель включает плоский ферромагнитный сердечник со стержнями, предназначенными для создания замкнутого магнитного поля в них, первичные обмотки, расположенные в виде катушек на стержнях и электрически изолированные от них, трубчатую вторичную обмотку, имеющую подводящий и отводящий патрубки и расположенную в магнитном поле изолированно и охватывающую все стержни ферромагнитного сердечника так, что вокруг каждого стержня образует один или несколько замкнутых витков, эти витки, расположенные в межкатушечном пространстве, соединены электрически параллельно неразъемно наружно шунтом, параллельным вектору магнитной индукции стержней, а на периферии между витками установлены один или несколько дистанционных цилиндрических элементов, наружно неразъемно соединенных с витками шунтом, параллельным вектору магнитной индукции стержней, при этом трубчатая вторичная обмотка состоит из внутренней рабочей трубы и выполнена многослойной из металлов так, что начиная с внутренней рабочей трубы каждый последующий слой полностью охватывает предыдущий, а по поверхности соприкосновения металлов внутренней рабочей трубы и каждого слоя обеспечено частичное взаимное растворение пограничных металлов.

Внутренняя рабочая труба вторичной трубчатой обмотки выполнена из высоко тепло- электропроводного металла, обеспечивает основную технологическую функцию – индукционный нагрев и передачу тепловой энергии воде и пару, находящимся в ее внутренней полости.

При реализации устройства может быть использован жаропрочный и/или жаростойкий слой. При использовании одного из слоев, как одного из частных случаев выполнения устройства, техническая задача - повышение эксплуатационной надежности - достигается также, как и при использовании одновременно нескольких слоев. При использовании одновременно двух слоев - жаропрочный слой трубчатой вторичной обмотки снаружи охватывает внутреннюю рабочую трубу и способствует сохранению механических параметров вторичной трубчатой обмотки во время ее длительной работы в условиях нагрева до высоких температур, а следующий за ним жаростойкий слой, охватывающий жаропрочный, предотвращает окисление наружной поверхности вторичной трубчатой обмотки кислородом воздуха во время нагрева. Как частные примеры выполнения, могут наноситься другие дополнительные слои, улучшающие теплофизические, электромагнитные и иные полезные свойства трубчатой вторичной обмотки индукционного устройства. Способ образования слоев обеспечивает частичное растворение пограничных металлов друг в друге и в металле, из которого изготовлена внутренняя рабочая труба. В этом случае достигается возможность нормальной эксплуатации вторичной трубчатой обмотки в соответствии с предъявляемыми к ней требованиями, включая повышение рабочей температуры и рабочего давления.

Доказательства возможности осуществления нового электрического пароперегревателя с реализацией указанного усовершенствования приводятся ниже на конкретном примере электрического пароперегревателя. Этот характерный пример реализации конкретного электрического пароперегревателя согласно предлагаемому изобретению ни в коей мере не ограничивает объем его правовой защиты. В этом примере дана лишь конкретная иллюстрация нового электрического индукционного пароперегревателя.

Изобретение поясняется графически, где:

на фиг.1 показан общий вид электрического пароперегревателя (аксонометрия);

на фиг.2 представлена трубчатая вторичная обмотка (аксонометрия);

на фиг.3 представлено продольное сечение участка трубчатой вторичной обмотки.

В данном конкретном примере электрический пароперегреватель выполнен на базе трехфазного трансформатора с плоским ферромагнитным сердечником 1 со стержнями 2, на которых расположены первичные обмотки в виде катушек 3. Первичная обмотка в виде катушек 3 подсоединяется к источнику электрического переменного тока через отводы 4. Трубчатая вторичная обмотка 5 выполнена из многослойной трубы и имеет подводящий 6 и отводящий 7 патрубки. Трубчатая вторичная обмотка 5 электрического пароперегревателя изолирована в магнитном поле и свернута так, что охватывает все стержни 2 плоского ферромагнитного сердечника 1 кольцами вокруг каждого стержня 2. При помощи шунта 9 и неразъемного соединения 8 витков трубчатой обмотки 5 в межкатушечном пространстве образуются короткозамкнутые витки вокруг каждого стержня 2. Шунт 9 короткого замыкания витков располагается в зоне неразъемного соединения 8 параллельного вектору магнитной индукции в стержнях 2. Вместе с тем, витки трубчатой обмотки 5, расположенные за пределами межкатушечного пространства, дистанцированы друг от друга на размер диаметра трубы и между ними с помощью неразъемного соединения 8 установлены дистанционные цилиндрические элементы 10, обеспечивающие жесткость конструкции и дополняющие короткое замыкание витка. Такое осуществление короткого замыкания токов вторичной трубчатой обмотки 5, соответствует физическим процессам, протекающим во вторичной короткозамкнутой обмотке трансформатора, благодаря чему устройство отличается простотой конструкции и в нем не возникает дополнительных энергетических потерь, приводящих к перегреву или разрушению электрических соединений. Кроме того, согласно изобретению, как вариант частного выполнения, вторичная трубчатая обмотка 5 состоит из внутренней рабочей трубы 11, покрытой по всей длине слоем 12 жаропрочного металла, поверх которого нанесен слой 13 жаростойкого металла. В рассматриваемом примере если взять материал внутренней рабочей трубы 11 медь, то в качестве жаропрочного металла 12 можно использовать мельхиор, а в качестве жаростойкого 13 нихром, при этом, в зависимости от обстоятельств, может быть использован только жаропрочный или жаростойкий слой. При нагревании мельхиора его прочность улучшается, тем самым возрастает долговечность вторичной трубчатой обмотки 5 и, тем самым повышается эксплуатационная надежность. Нихром обеспечивает повышенную жаростойкость при длительной работе в режиме повышенных температур, тем самым возрастает износостойкость горячей поверхности при ее взаимодействии с кислородом воздуха, что также повышает эксплуатационную надежность устройства. Все перечисленные металлы и сплавы взаиморастворимы. Вместо сплавов для повышения теплофизических характеристик вторичной трубчатой обмотки 5 также применимы чистые металлы никель и хром. Толщина слоев 12 и 13 зависит от толщины стенки внутренней рабочей трубы 11.

Работает предлагаемый электрический пароперегреватель следующим образом. Вначале обеспечивают движение воды путем подачи ее под давлением через подводящий патрубок 6 во внутреннюю полость трубчатой вторичной обмотки 5. Затем первичные обмотки 3 через отводы 4 подключают к сети переменного тока. В результате этого первичные обмотки 3 индуцируют в стержнях 2 переменный магнитный поток. Под действием переменного магнитного потока в короткозамкнутых вокруг каждого стержня 2 витках трубчатой вторичной обмотки 5, образованных с помощью неразъемных соединений 8 и шунтов 9, индуцируется сильный ток в стенке внутренней рабочей трубы 11, нагревающий трубчатую вторичную обмотку 5. Электрическое сопротивление жаропрочного слоя 12 и/или жаростойкого слоя 13 значительно превосходят электрическое сопротивление внутренней рабочей трубы 11, в связи с чем индукционный ток на поверхности ослабевает и нагрев наружной поверхности вторичной трубчатой обмотки 5 соответственно уменьшается. Тепловая энергия от стенки внутренней рабочей трубы 11 переходит к воде, движущейся в контакте с ней во внутренней полости трубчатой вторичной обмотки 5. Здесь же в соответствии с принципом работы прямоточного парогенератора происходит испарение воды и полученный пар выходит через отводящий патрубок 7.

Величина тока, нагревающего трубчатую обмотку 5, ее длина и теплоаккумулирующая способность при исполнении устройства в соответствии с настоящим изобретением не являются конфликтующими параметрами, благодаря чему в процессе проектирования данного устройства обеспечивается возможность создания компактных и надежных в работе пароперегревателей. Неразрывность трубчатой вторичной обмотки 5 и равномерность ее нагрева электрическим током по всей длине обеспечивает в полной мере осуществление базового принципа действия прямоточного пароперегревателя. При испытании пароперегревателя мощностью 10 КВт, спроектированного и изготовленного в соответствии с настоящим изобретением установлено, что устройство имеет высокий КПД и измеренный коэффициент мощности 0,99, производит 15 кг пара/час с температурой 400 град.С и давлением 13 бар (перегретый пар), при этом недостатки прототипа преодолены и устройство может использоваться как прямоточный пароперегреватель в широком диапазоне мощностей. При работе устройство подвергается высоким нагрузкам в связи с воздействием на поверхности его трубчатой вторичной обмотки высокой температуры, она нагревается до предельных показателей. Перегрев насыщенного пара значительно повышает эффективность работы оборудования.

Похожие патенты RU2736270C1

  • Фазлыев Айрат Альбертович
  • Шипилов Владимир Михайлович
  • Шипилов Владимир Михайлович
  • Фазлыев Айрат Альбертович
  • Марков Сергей Михайлович
  • Шипилов Владимир Михайлович
  • Асланов Георгий Севастиевич
  • Шипилов Владимир Михайлович
  • Фазлыев Айрат Альбертович
  • Карманов Е.Д.
  • Шаплов С.И.
  • Елшин А.И.
  • Казанский В.М.
  • Асланов Георгий Севастиевич
  • Асланов Георгий Севастиевич
  • Черепанов В.А.
  • Дрягин В.В.
  • Опошнян В.И.
  • Копылов А.Е.

Иллюстрации к изобретению RU 2 736 270 C1



Реферат патента 2020 года ЭЛЕКТРИЧЕСКИЙ ПАРОПЕРЕГРЕВАТЕЛЬ


Изобретение относится к устройствам преобразования электрической энергии в тепловую и для создания теплообмена, в частности к прямоточным электрическим парогенераторам. В электрическом пароперегревателе, включающем плоский ферромагнитный сердечник со стержнями, предназначенными для создания замкнутого магнитного поля в них, первичные обмотки, расположенные в виде катушек на стержнях и электрически изолированные от них, трубчатую вторичную обмотку, имеющую подводящий и отводящий патрубки и расположенную в магнитном поле изолированно и охватывающую все стержни ферромагнитного сердечника так, что вокруг каждого стержня образует один или несколько замкнутых витков, трубчатая вторичная обмотка состоит из внутренней рабочей трубы и выполнена многослойной из металлов так, что начиная с внутренней рабочей трубы каждый последующий слой полностью охватывает предыдущий, а по поверхности соприкосновения металлов внутренней рабочей трубы и каждого слоя обеспечено частичное взаимное растворение пограничных металлов. Изобретение обеспечивает повышение эксплуатационной надежности для производства пара высокой температуры и высокого давления на основе индукционной технологии, а также расширение области применения данного устройства. 5 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 736 270 C1

1. Электрический пароперегреватель, включающий плоский ферромагнитный сердечник со стержнями, предназначенными для создания замкнутого магнитного поля в них, первичные обмотки в виде катушек, расположенные на стержнях и электрически изолированные от них, трубчатую вторичную обмотку, имеющую подводящий и отводящий патрубки, расположенную в магнитном поле изолированно и охватывающую все стержни ферромагнитного сердечника так, что вокруг каждого стержня образует один или несколько замкнутых витков, расположенных в межкатушечном пространстве и соединенных электрически параллельно неразъемно наружно шунтом, параллельным вектору магнитной индукции стержней, а на периферии между витками установлены один или несколько дистанционных цилиндрических элементов, наружно неразъемно соединенных с витками шунтом, параллельным вектору магнитной индукции стержней, при этом трубчатая вторичная обмотка состоит из внутренней рабочей трубы и выполнена многослойной из металлов так, что начиная с внутренней рабочей трубы каждый последующий слой полностью охватывает предыдущий, а по поверхности соприкосновения металлов внутренней рабочей трубы и каждого слоя обеспечено частичное взаимное растворение пограничных металлов.

2. Электрический пароперегреватель по п. 1, отличающийся тем, что его внутренняя рабочая труба выполнена из меди и покрыта снаружи слоем мельхиора.

3. Электрический пароперегреватель по п. 1, отличающийся тем, что его внутренняя рабочая труба выполнена из меди и покрыта снаружи слоем нихрома.

4. Электрический пароперегреватель по п. 1, отличающийся тем, что его внутренняя рабочая труба выполнена из меди и покрыта снаружи слоем мельхиора и слоем нихрома.

5. Электрический пароперегреватель по п. 1, отличающийся тем, что его внутренняя рабочая труба выполнена из меди и покрыта снаружи слоем никеля и слоем хрома.

6. Электрический пароперегреватель по п. 1, отличающийся тем, что его ферромагнитный сердечник выполнен трёхфазным.

Парогенераторы в промышленности используют для получения насыщенного водяного
пара. В зависимости от конструкции и принципа работы парогенераторы делятся на
ТЭНовые, индукционные и электродные.

ТЭНовые парогенераторы обеспечивают получение пара за счет нагрева воды ТЭНами.
Такие парогенераторы позволяют получать чистый беспримесный пар, что в некоторых
стерильных процессах является определяющим. Недостатком их считается образование
слоя накипи на нагревательных элементах в процессе работы, вследствие чего они сильно
перегреваются и быстро выходят из строя. Для того чтобы избежать появления накипи,
воду для ТЭНовых парогенераторов умягчают.

Принцип работы электрических электродных парогенераторов основан на прямом
нагреве воды с помощью электрического тока, пропускаемого между электродами. Так
как водопроводная вода не обладает нужной электропроводностью, ее заранее
подготавливают. В процессе работы при постепенном выкипании воды
электропроводность ее увеличивается, поэтому отработанную воду сливают в отдельные
емкости, заменяя свежей. Чтобы контролировать электропроводность жидкости в
нагревателе, их оснащают специальными датчиками.

Электродные паронагреватели обладают меньшими размерами, чем ТЭНовые и более
долговечны из-за простоты конструкции и отсутствии накипи на нагревательных частях.
Но количество потребляемой электроэнергии такими котлами больше, чем другими.

Третий тип парогенераторов использует принцип нагрева воды за счет высокочастотного
излучения, когда нет соприкосновения нагревателя и жидкости. Подобный принцип
применяется в СВЧ печах. Это не только позволяет получать очень чистый пар, но и
увеличивает срок службы всех частей парогенератора, так как нет возможности
образования накипи или появления коррозии металла. Также в данном процессе не
требуется умягчать воду или менять ее электропроводность.

В настоящее время можно разделить рынок парогенераторов малой мощности на ряд секторов. Определившись, каким видом топлива располагает предприятие: твердым, природный газ или электричество, необходимо оценить какое из них наиболее выгодно использовать при эксплуатации парогенерирующего оборудования.


Обеспечить паром производственный цех, как и любой другой объект, можно двумя способами: воспользоваться услугами централизованной тепловой сети или оборудовать предприятие автономным парогенератором. Недостатки обоих способов очевидны: в первом случае компании придется оплачивать услуги поставщика и устройство паропровода (при этом подача пара может быть нестабильной, а его качество — не соответствовать технологическим требованиям); во втором — покупка, установка и эксплуатация собственного парогенератора потребуют соответствующих затрат.

Данные затраты можно минимизировать, подобрав парогенератор, точно соответствующий потребностям того или иного предприятия. Далеко не везде необходимо устанавливать агрегаты производительностью тонны пара в час, да и качество требуемого пара может быть разное, в зависимости от его предназначения. Сейчас можно разделить рынок парогенераторов малой мощности на ряд секторов. Подобное разделение можно провести и по максимальному рабочему давлению парогенераторов.

Определившись, каким видом топлива располагает предприятие: твердым (торф, дрова, уголь, древесные отходы), жидким (мазут, дизельное топливо, печное бытовое топливо), природный газ или электричество, необходимо оценить какое из них наиболее выгодно использовать при эксплуатации парогенерирующего оборудования.

Парогенераторы на органическом топливе

Современная промышленность предлагает достаточно большой выбор парогенераторов. Пар в парогенераторах получают за счет тепла сжигаемого органического топлива, или преобразования электрической энергии в тепловую. По относительному движению теплообменивающихся сред (дымовых газов, воды и пара), парогенераторы могут быть подразделены на две группы: жаротрубные и водотрубные. В жаротрубных парогенераторах внутри труб движутся дымовые газы, а вода омывает трубы снаружи.

В водотрубных, наоборот, внутри труб движется вода и пароводяная смесь, а дымовые газы омывают трубы снаружи. В результате этого процесса происходит выработка пара. По принципу движения воды пароводяной смеси парогенераторы подразделяется на агрегаты с естественной и с принудительной циркуляцией. Последние подразделяются на прямоточные и с многократно-принудительной циркуляцией (беструбные).

Среди парогенераторов малой мощности есть котлы классических жаротрубной и водотрубной конструкций, но самые распространенные — прямоточные и так называемые беструбные (tubeless). В прямоточных парогенераторах питательный насос подает воду в змеевик, размещенный в камере сгорания. Полное испарение происходит за один проход воды через змеевик. Их основное достоинство — возможность получения пара высокого (до 22,1 МПа) давления и относительно небольшие габариты.

Конструкция змеевика обеспечивает эффективное использование поверхности теплообмена, а во время работы требует минимального количества воды, что исключает возможность взрыва парогенератора. Труба змеевика спроектирована таким образом, что обеспечивает турбулентный продув дымовых газов через змеевик. По конструкции беструбный парогенератор напоминает жаротрубный двухходовой котел.

Однако при втором проходе продукты сгорания в нем движутся не по трубам, а по цилиндрическому газоходу, образованному корпусом котла и оребренной стенкой водяной рубашки. Поверхность камеры сгорания у некоторых моделей выполнена гофрированной, что также улучшает теплообмен и снижает напряжение, вызванное термическим расширением различных элементов котла. Интересное решение по интенсификации теплообмена воплощено в парогенераторах фирмы Clayton.

В отличие от традиционных жаротрубных парогенераторов с природной циркуляцией воды, преимущество Clayton заключается в использовании принципа противопоточного обмена тепла (встречного потока дымовых газов и воды в змеевике) в сочетании с принудительной циркуляцией. В данных парогенераторах горелка находится внизу, а дымовые газы движутся природным способом вверх. Такая конструкция значительно увеличивает безопасность, особенно при работе котла на жидком топливе, т.к. любая утечка топлива будет немедленно выявлена, в отличие от горелки сверху.

Теплообмен в парогенераторе Clayton улучшается за счет сферообразной формы пламени, которая имеет наибольшую площадь теплоотдачи. Котловая вода в парогенератор Clayton поступает в самом холодном месте (где дымовые газы имеют наименьшую температуру) и поэтому градиент температур максимальный. Также для того чтобы поглотить максимальное количество тепла, диаметр трубы змеевика увеличивается в три раза (т.к. увеличивается объем пароводяной смеси).

Окончательно вода отделяется от пара в сепараторе, и к потребителю поступает качественный энергосберегающий пар (в котором находится большое количество тепла), а это в свою очередь влияет на потребления топлива. К примеру, пар с 5 %-й влажностью увеличивает потребление топлива на 4–5 %, если же влажность будет достигать 40– 50 %, то соответственно и потребление топлива увеличиться в полтора раза для поддержания теплового режима на технологическом процессе.

Электрические парогенераторы

Производительность электрических парогенераторов редко превышает несколько сотен кг/ч. В более мощных паровых установках электричество используется крайне редко. Для таких производств, где потребность в технологическом паре не очень велика (порядка 300 кг пара/ч) и имеется возможность использовать электроэнергию для генерации пара, самым оптимальным решением проблемы пароснабжения становится приобретение электропарогенераторов.

В то же время на предприятии, где установлен такой парогенератор, должен быть источник электрической энергии соответствующей мощности. В современных электропарогенераторах используются следующие способы нагрева: ТЭНовый, электродный и индукционный. В ТЭНовых электропарогенераторах для кипячения применяются трубчатые нагревательные элементы ТЭНы.

Рубашку ТЭНов изготавливают из материалов, не загрязняющих воду, например, из нержавеющей стали, что позволяет получить достаточно чистый пар, который можно использовать в пищевой промышленности, в непосредственном контакте с продуктами. Еще одно достоинство ТЭНовых парогенераторов — эффективный нагрев воды любой электропроводности. К основным недостаткам таких приборов можно отнести интенсивное отложение солей жесткости (накипи) на поверхности ТЭНов, что может привести к его перегоранию, а также невозможность плавного регулирования мощности агрегата.

Избежать перегорания ТЭНа можно только используя глубоко умягченную подпиточную воду или омагничивание, что весьма удорожает стоимость установки. В отличии от емкостных ТЭНовых парогенераторов, многотрубная конструкция парогенераторов циркуляционного типа, позволяет создать несколько замкнутых циркуляционных контуров, что дает возможность при небольшом объеме жидкости обеспечить высокую скорость омывания ТЭНов, (максимальную теплоотдачу), что практически исключает перегрев ТЭНа и обеспечивает длительный срок службы.

В отличие от ТЭНов, электроды не могут перегореть, и выпадение осадка на них незначительно (температура электродов почти не отличается от температуры воды). Путем изменения площади соприкосновения электрода с нагреваемой водой, можно плавно регулировать мощность парогенератора. Кроме того, большинство электродных парогенераторов обладает меньшими габаритами и стоимостью, чем ТЭНовые аналогичной мощности.

Однако вода, используемая в электродных котлах, должна иметь достаточно высокую электропроводность, поэтому в нее добавляют различные химически активные вещества (соли, кислоты, пищевую соду и т.д.). Такой пар может привести к разрушению элементов системы, в которую он поступает. Кроме того, его нельзя использовать в ряде технологических процессов. В индукционных парогенераторах вода нагревается с помощью высокочастотного излучения.

Критерии выбора парогенератора

Расход пара, выработка пара или производительность по пару — основная техническая характеристика парогенераторов, которая измеряется в кг пара/ч. Для подбора парогенератора также надо знать давление пара, которое он должен обеспечивать. Расход пара часто не сравнивается при одинаковых условиях, что может приводить к ошибке при выборе или покупке (котел может оказаться других габаритов или мощностей).

Причина этому — то, что при выборе котла надо как-то классифицировать выработку пара. Вот три термина, обычно характеризующие выработку пара: производительность котла при заданной температуре питательной воды (например, при 100 °C) и давлении пара на выходе 0 атм; максимальная выработка пара; полезная выработка пара. Производительность парогенератора — выработка пара котлом на выходном фланце при температуре питательной воды 100 °C и давлении пара 0 атм, т.е. при температуре пара также 100 °C.

Это наиболее часто и широко используемое понятие при выработке пара, которое указывается в большинстве брошюр и др. технических описаниях. Например, в американской индустрии принято оценивать производительность котлов в лошадиных силах [л.с.], имея в виду, что одна котловая л.с. равна 34,5 фунтам пара в час при температуре питательной воды 100 °C и давлении пара 0 атм.

Максимальная выработка пара — расход пара, который обеспечивается на выходном фланце котла при рабочих параметрах, зависит от состояния питательной воды и состояния пара для данных условий. Максимальная выработка пара обычно отличается от производительности пара при температуре питательной воды 100 °C и 0 атм, потому что питательная вода на входе и состояние пара на выходе различны при 100 °C и 0 атм.

Полезная выработка пара — количество пара в единицу времени, непосредственно доходящее до потребителя; является наиболее важным параметром. По определению, полезная выработка пара равна максимальной выработке пара (на котле) минус потери пара на котле при изменениях нагрузки минус потери пара при его транспортировке минус пар, идущий на собственные нужды котельной.

При колебаниях нагрузки пар может оказаться в избытке или его необходимо поддерживать постоянно в несколько избыточном объеме для компенсации возможных изменений нагрузки вследствие запаздывания в реакции котла на ее изменение. При значительном удалении котла от потребителя происходят потери пара как на котле, так и на трубопроводе вследствие его охлаждения и конденсации.

Кроме нескольких очень специфичных приложений, обычно полезная выработка пара меньше максимальной выработки пара (на котле) и производительности пара при температуре питательной воды 100 °C. Существует еще один фактор, который может оказывать существенное влияние на работу котла. Это количество продувок, которое требуется для его эффективной работы. С помощью продувок удаляют нерастворимые соли из котла и трубопроводов.

В этом случае продувка относится к количеству воды, которое постоянно должно удаляться из котельной системы для контроля количества нерастворимых солей в котле. Вода, которая удаляется из котла, нагревается, и количество энергии, необходимое для нагрева этой воды, уменьшает количество энергии, необходимое для производства пара. Таким образом, эксплуатационная эффективность котла может существенно отличаться от заявленных изготовителем процентов КПД при неизменной нагрузке (25, 50 или 100 %).

Кроме того, выбирая конкретную модель парогенератора среди присутствующих на рынке моделей со сходными техническими характеристиками, необходимо обращать внимание на характерные особенности выбираемого парогенератора: дополнительные возможности регулировки выходных параметров пара — давления, влажности, расхода пара, а также возможность регулирования потребляемой парогенератором мощности в соответствии с текущими потребностями; наличие в конструкции парогенератора всех необходимых для полноценной его работы элементов, комплектующих, включая блок водоподготовки; материал и толщина корпуса; степень автоматизации процесса выработки пара, возможности аварийной сигнализации и т.п., соответствующих соблюдению жестких требований безопасности; ремонтопригодность парогенератора, популярность и, как следствие, степень развития рынка запчастей и комплектующих к данной модели парогенератора; внешний вид парогенератора, удобство эксплуатации, доступность элементов регулировки процесса производства пара, отсутствие травмоопасных элементов конструкции.

Большинство специалистов считает, что в настоящее время отечественный рынок парогенераторов малой производительности находится в стадии становления, и оценить его объем очень сложно. Оценка продаж электрических парогенераторов затруднена, поскольку, как уже говорилось, их применение обычно не требует регистрации, а выпуском этого оборудования занимается множество производителей, часть из которых представляет собой мелкие, почти кустарные предприятия. Тем не менее специалисты отмечают позитивные тенденции роста, инвестиционную привлекательность данной отрасли.

Читайте также: