К какому оборудованию относятся компрессоры насосы вентиляторы

Обновлено: 03.05.2024

Компрессоры и вентиляторы относятся к группе механизмов, получивших широкое распространение на всех промышленных предприятиях.

Компрессоры применяются для получения сжатого воздуха или другого газа давлением свыше Па ( ) с целью использования его энергии в приводах пневматических молотов и прессов, в пневматическом инструменте, в устройствах пневмоавтоматики и т.д. Разновидностью компрессоров являются воздуходувки, служащие для подачи воздуха или газов давлением от до Па.

По принципу действия компрессоры делятся на центробежные и поршневые. Центробежные компрессоры по конструкции подразделяют на турбинные и ротационные. В турбинном компрессоре (рис. 1, а) ротор 1 с лопастями при вращении захватывает газ из впускного трубопровода 2 и выбрасывает его в выпускной трубопровод 3. Увеличение давления происходит за счёт повышения скорости движения частиц газа и его сжатия между лопастями и корпусом компрессора при эксцентричном расположении ротора.

В ротационном компрессоре (рис. 1, б) увеличение давления осуществляется путём сжатия газа в камерах, образуемых с помощью пластин 1, которые перемещаются под действием центробежных сил в направляющих ротора 2 при его вращении и прижимаются к стенкам корпуса. Впускной вентиль 6 и выпускной вентиль 3 во время работы компрессора открыты. Для обеспечения работы компрессора при отсутствии потребления сжатого газа служит обходной трубопровод 4 с вентилем 5.

Статическая мощность на валу центробежных компрессоров изменяется пропорционально третьей степени угловой скорости (рис. 1, г) если отсутствует противодавление. Для этих механизмов характерны простота конструкции, надёжность в эксплуатации и высокая производительность. Такие компрессоры применяются для получения давлений до Па (турбинные) и Па (ротационные).


В поршневом компрессоре (рис. 1, в) при вращении кривошипного вала 1 и движения поршня 2 вниз газ засасывается через открытый впускной клапан 3. При движении поршня вверх клапан 3 закрывается, происходит сжатие воздуха, который через выпускной клапан 4 направляется к потребителям.

Поршневые компрессоры отличаются неравномерностью подачи газа. В компрессоре одинарного действия подача газа производится только при ходе поршня вверх. В компрессоре двойного действия подача газа осуществляется при ходе поршня в обе стороны. Мгновенная мощность на валу таких механизмов изменяется по синусоидальному закону в зависимости от угла поворота кривошипа (рис. 1, д). С целью сглаживания графика нагрузки на валу приводного двигателя устанавливают маховик. Для уменьшения колебаний давления у потребителя между ним и компрессором помещают ресивер (промежуточный герметичный резервуар – воздухосборник). Поршневые компрессоры имеют более сложную конструкцию чем центробежные, и применяются для получения давлений до Па при относительно небольшой производительности.

Высокие давления газа могут быть получены только в многоступенчатых компрессорах, в которых газ сжимается последовательно в нескольких цилиндрах или камерах. При сжатии газа в компрессорах выделяется большое количество тепла, которое обычно отводится с помощью проточной воды, проходящей через кожух компрессора. Благодаря охлаждению сохраняется неизменной температура сжимаемого газа и снижается мощность приводного двигателя. Угловая скорость рабочего вала компрессоров составляет у поршневых 30–75 рад/с, у ротационных 300 рад/с, у турбинных до 1200 рад/с.


Вентиляторыпредназначены для вентиляции производственных помещений, отсасывания газов, подачи воздуха или газа в камеры электропечей, в котельных и других установках. Вентиляторы создают перепад давления Па.

По конструкции вентиляторы делятся на центробежные и осевые. Они выпускаются в нескольких исполнениях в зависимости от направления выхода воздуха (вверх, вниз, горизонтально и т.д.) и направления вращения. Рабочее колесо 1 центробежного вентилятора (рис. 2, а) вращается в кожухе 2.


Воздух засасывается через боковое отверстие 4 кожуха и выбрасывается через выходной раструб 3. Осевой вентилятор (рис. 2, б) имеет рабочее колесо с несколькими лопатками 1, сходными с лопатками воздушного или гребного винта. Колесо вращается электродвигателем 2, укреплённым в корпусе 3 и создаётся тяга (поток) воздуха через раструб вентилятора.





Наибольшее распространение на промышленных предприятиях получили центробежные вентиляторы. Они имеют такую же, как и центробежные компрессоры, зависимость статической мощности на валу от скорости (рис. 1, г), называемую вентиляторной характеристикой. Момент на валу вентилятора изменяется пропорционально квадрату скорости, а производительность вентилятора пропорциональна угловой скорости в первой степени.

Компрессорные установки представляют собой специальное оборудование, широко используемое в различных технологических процессах в химической, металлургической, газовой, строительной и других отраслях промышленности.

Сегодня практически ни одна сфера производства не обходится без использования подобного оборудования, которое может быть классифицировано по области применения:

  • общего назначения;
  • энергетические;
  • нефтехимические и другие.

Сегодня данное оборудование представлено в широком спектре моделей, вариантов исполнения и назначения. Каждый тип компрессора имеет свои конструктивные особенности, индивидуальные технические и рабочие характеристики, исходя из которых необходимо выбирать тот или иной тип компрессора. Для этого необходимо знать, какие бывают компрессоры и их основные характеристики.

Классификация компрессоров – основные виды оборудования

Современные компрессоры имеют несколько различных классификаций, среди которых наиболее значимым является подразделение оборудования на типы в зависимости от конструктивных особенностей и принципа действия компрессоров. В первую очередь необходимо отметить два основных типа компрессоров:

Здесь Вы можете ознакомиться с каталогом компрессоров, реализуемых ООО ГК "ТехМаш".

Лопастной компрессор - это оборудование, работа которого основана на динамическом принципе действия. В данном типе установок увеличение давления осуществляется благодаря взаимодействию потока воздуха с решетками лопастей, одна из которых вращающаяся, а другая неподвижная. Оборудование лопастного типа в свою очередь подразделяются на следующие виды компрессоров:

  • центробежные;
  • радиально-осевые;
  • осевые.

Установки поршневого типа стали особенно популярны благодаря сочетанию таких преимуществ, как удобство эксплуатации, высокие рабочие характеристики, длительный срок службы, небольшие габариты и многое другое. При этом данный вид компрессоров отлично подходит для любых видов работ с широким диапазоном значения необходимого давления.

Основными рабочими элементами поршневых компрессоров являются электропривод, крышка цилиндра, регулятор давления и ресивер. Создание необходимого давления воздуха в оборудовании данного типа происходит благодаря поступательным движениям поршня. Поршневые компрессоры имеют свою классификацию и подразделяются на:

  • двойного или одинарного действия;
  • масляные и безмасляные;
  • угловые, горизонтальные, вертикальные;
  • с различным количеством цилиндров.


Другой вид объемных компрессоров – роторные установки, главной особенностью которых является наличие вращающихся сжимающих элементов. Данные виды компрессоров могут быть как промышленными, так полупромышленными или же бытовыми. Их рабочие параметры, условия и особенности эксплуатации подходят для проведения технологических процессов на любых предприятиях и в различных сферах деятельности.

К категории роторных установок относятся следующие виды компрессоров:

  • Винтовое оборудование – такие установки оснащены ведущим и ведомым роторами, вращающимися по направлению друг к другу. Данный принцип вращения приводит к уменьшению пространства между корпусом и роторами, что и обеспечивает увеличение давления. Главным преимуществом данного типа компрессоров является возможность их использования в условиях интенсивной эксплуатации.
  • Спиральные компрессоры – обладают смещенной неподвижной и подвижной спиралями. Установлены они специальным образом, создавая полости с постоянно изменяющимся в них объемом.
  • Роторно-пластинчатые установки – главным элементом таких установок является установленный в корпусе со смещением с центра ротор с пластинами. Перемещение пластин может происходить в радиальном направлении.
  • Жидкостно-кольцевые – в корпусе, который частично заполнен жидкостью, находится ротор с фиксированными лопатками.

Классификация компрессоров исходя из особенностей их конструкции и принципа действия - не единственная. Так, по способу охлаждения компрессоры бывают с воздушным или же жидкостным охлаждением. Существует классификация и по приводному двигателю – от газовой турбины, двигателя внутреннего сгорания и электродвигателя.

Кроме того, классификация компрессоров также может быть различной в зависимости от уровня конечного давления:

  • установки с низким уровнем давления;
  • давление среднего уровня;
  • оборудование со сверхвысоким давлением.

Выбор необходимого компрессорного оборудования зависит от требований, предъявляемых к установкам, условий и особенностей эксплуатации, типа проводимых работ и других характеристик.


Существует мнение, что компрессоры – это те же самые насосы, которые нагнетают газ вместо жидкости. В какой-то степени так и есть, однако между ними существуют значительные различия. Разбираемся в деталях.

Для начала рассмотрим их сходства:

И те и другие по принципу действия подразделяются на объемные и динамические (лопастные).

И насосы и компрессоры способны обеспечить широкий диапазон производительности и давления.

Поршневые насосы и компрессоры используются при низкой производительности и высоком давлении.

Центробежные насосы и компрессоры хороши при высокой производительности, но низком напоре. Центробежный компрессор по другому называется воздуходувкой.

И, наконец, винтовые насосы и компрессоры используются для обеспечения средних значений производительности и давления.

В компрессорах, как и в насосах, может использоваться несколько рабочих ступеней (рабочих колес) при необходимости обеспечить высокое давление.

И там и там используются уплотнения, подшипники, системы смазки. Однако на этом сходства заканчиваются.

Слово на букву T (Термодинамика)

Основное различие между насосами и компрессорами связано с термодинамической природой газов. Из-за несжимаемости жидкости ее поведение может быть объяснено относительно простым уравнением Бернулли, в котором плотность жидкости предполагается постоянной в течение всего технологического процесса.

Газ, напротив, весьма хорошо сжимаем. Из-за этого работа компрессора представляет собой гораздо более сложный процесс по сравнению с работой насоса по перемещению жидкости.

Конструкция головки динамического компрессора определяется такими свойствами газа, как его плотность, молекулярная масса и отношение удельных теплоемкостей на входе каждого рабочего колеса. Еще одним существенным отличием является то, что энергия накапливается в газах при увеличении давления и физического сжатия молекул газа.

Кроме того, по мере увеличения давления газовой смеси, жидкие фракции могут отделяться в зависимости от степени сжатия и фактического состава (влажности) газа. Компрессорная линия при необходимости должна содержать осушитель, ибо попытка сжать жидкость приведет к выходу компрессора из строя.

Эффект Джоуля-Томсона

Интересным побочным эффектом является то, что сжатие газа приводит к увеличению его температуры, а его расширение, напротив, к охлаждению. Эффект обычно наблюдается в аэрозольной упаковке (например, дезодоранта или краски), но также используется в холодильниках, кондиционерах и при сжижении газов. При обычных температурах и давлениях все реальные газы, кроме водорода и гелия, нагреваются при сжатии. Британские физики Джеймс Джоуль и Уильям Томсон исследовали это явление во второй половине 19 века.

В целях повышения эффективности работы компрессора требуется понизить температуру сжимаемого газа. Для этого используют теплообменники, жидкостные или воздушные. Возможным побочным эффектом охлаждения сжатого воздуха является выделение из него жидкой фракции (по сути, выпадение росы). Жидкость мгновенно выводит компрессор из строя. По этой причине, большинство компрессоров требуют установки осушителей на всасывающей линии, а также между уровнями многоступенчатых компрессоров. Чрезмерное попадание влаги в центробежных компрессорах может привести к коррозии рабочего колеса, перегрузки двигателя и даже к отказу подшипников. В поршневых компрессорах попадание жидкости ведет к немедленному повреждению головки из-за отсутствия внутренних зазоров в поршневой камере.

Надежность

В технологических линиях надежность и непрерывность работы компрессоров, как правило, более критична по сравнению с насосами. Они имеют более высокие затраты на приобретение и обслуживание при равной мощности. Настройка работы компрессоров более сложная, они часто являются наиболее уязвимым звеном во всей системе. Для инженеров настройка компрессорной линии может стать настоящей головной болью.

В большинстве случаев надежность компрессоров имеет первостепенное значение, поскольку в соответствиями с требованиями технологических процессов их выход из строя недопустим. Они должны непрерывно работать в течение 5 лет между ремонтами. Для достижения этой цели, компрессоры требуют высокотехнологичных вспомогательных компонентов, таких как смазка подсистем, уплотнений и подшипников. Дополнительная защита в виде контроля помпажа для центробежных компрессоров и датчиков вибрации, как правило, интегрирована в высокоскоростных компрессорных установках.

Безопасность

Компрессоры потенциально гораздо более травмоопасны. Сжатый газ заключает в себе большую потенциальную энергию, к которой всегда следует относиться с должным уважением. Добавьте сюда вероятность возгорания, если Вы имеете дело с горючими газами, и получите гремучую смесь технологических рисков, возникающих при эксплуатации компрессоров. По этой причине, проектирование, подбор и монтаж компрессоров требует большого мастерства, знаний и опыта по сравнению с использованием насосов.

Резюмируем: компрессоры – это не просто насосы, которые перекачивают газ. Это самостоятельный класс оборудования, имеющего дело с другими физическими процессами и требующими другого подхода и знаний для их грамотной эксплуатации.

что такое компрессор

Все большее применение находит оборудование, подающее воздух под давлением. Учитывая его актуальность, предлагаем рассмотреть, что такое компрессор, для чего нужен, каких видов бывает и как он функционирует. С удовольствием предоставим вам максимум полезной информации об агрегатах, широко используемых как в профессиональной сфере, так и в быту, чтобы вы могли выбрать модель, производительность и другие характеристики, которые идеально подходят для решения ваших задач.

Сразу скажем о сферах применения. Практически любое современное промышленное предприятие, так или иначе, использует компрессоры в своем технологическом процессе.

Назначение компрессора и принцип его действия

Можно дать сразу несколько определений этому оборудованию. Например, с технической точки зрения это сложный агрегат, состоящий из определенного количества элементов механической рабочей группы. Сложно для восприятия? Картину прояснит алгоритм функционирования – он предельно прост.

Любая такая установка:

  • вбирает (всасывает) газовую среду;
  • пропускает ее через себя, попутно понижает температуру, очищает, сепарирует (если это необходимо) и, главное, подвергает сжатию;
  • выдает ее устройствам конечного потребления.

В процессе могут быть использованы самые разные методы, а также смазки и/или охлаждающие жидкости, суть от этого не меняется. Таким образом, компрессор – это машина, предназначенная для повышения давления и перекачивания газов. Роль компрессора в технологическом процессе имеет важное значение, поэтому к его эксплуатационным характеристикам предъявляются достаточно жесткие требования: он должен быть надежным, высокопроизводительным, с крайне низким процентом отказов.

компрессорное оборудование

Конструкция и схема

Конфигурация может различаться в зависимости от видов модели (о которых ниже), но каждый вариант состоит из следующих функциональных групп:

  • механизма сжатия – это может быть винтовая пара, поршневая группа или другой элемент, осуществляющий нагнетание газовой среды;
  • привод — двигатель (электрический, на жидком топливе или на газу), механизм передачи мощности (прямой, редуктор или ременной);
  • распределения и регулирования– вся имеющаяся совокупность клапанов, трубопроводов и шлангов;
  • смазки – маслопроводы, фильтры, насосы, отделители, резервуары;
  • охлаждения – трубы, концевые и промежуточные теплообменники;
  • электротехнические установки – контакторы, реле, предохранители и блок управления.

Напомним, это в самом общем случае, а конкретика уже зависит от оборудования, к рассмотрению вариантов которого мы и переходим.

Виды компрессоров: описание

Объемные

Это тип компрессоров, в которых сжатие происходит за счет уменьшения объема камеры. К ним относятся: поршневые, винтовые, мембранные, жидкостно-кольцевые, роторно-пластинчатые и спиральные.

С момента изобретения первого компрессора в 1650 году было изобретено большое количество разных типов моделей, используемых в той или иной ситуации. Обратим внимание на те из них, которые продолжают оставаться актуальными.

Поршневые

Классически распространены, хотя сегодня во многих сферах их уже активно вытесняют более перспективные винтовые. Могут быть как стационарными, с электродвигателем, так и мобильными, с мотором внутреннего сгорания и колесным/гусеничным шасси.

Главное, что нагнетание и подачу осуществляют поршни, передвигающиеся в гильзах, и это позволяет обеспечивать следующие эксплуатационные характеристики:

  • давление до 500 бар;
  • производительность больших газовых компрессоров может достигать 8000 м3/ч.

По конструкции они сравнительно сложны, поэтому в процессе работы требуют квалифицированного обслуживания.

Мембранные

Что делает компрессор такого типа, так это сжимает газ специальной пластиной, совершающей возвратно-поступательные движения благодаря штоку, зафиксированному на коленвале. В свою очередь, сама прокладка тоже закреплена – на камере, – и поэтому ей не нужны всевозможные уплотнители или кольца.

Данному виду присущи следующие преимущества:

  • общая надежность конструкции;
  • герметичность, а значит и высокий уровень нагнетания;
  • безопасность и защита от коррозии;
  • чистота (не нужно смазывать) и простота обслуживания.

Важная особенность: рабочая среда контактирует с мембраной и внутренними стенками камеры прибора, но не с атмосферой помещения или открытой площадки. Это позволяет перекачивать даже токсичные и вредные вещества , или, наоборот, ценные газы, утечки которых недопустимы.

Винтовые

компрессор для чего предназначен

Главным органом у них является роторная пара, вращающаяся и всасывающая воздух в корпус, состоящий из нескольких отделов. Проходя через систему резервуаров, клапанов и труб, рабочая среда охлаждается, очищается, нагнетается, после чего поступает к конечным потребителям.

Постепенно вытесняют собой поршневые модели – в силу следующих своих преимуществ:

Пластинчато-роторные

Характер их действия – на вытеснение, с передачей толчкового импульса в процессе нагнетания. В их случае газ засасывается за счет увеличения объема камеры между пластинами, вставленными в ротор. Давление создается за счет того, что, когда ротор поворачивается, объем камеры потом уменьшается. Процесс повторяется циклически, с каждым оборотом ротора. Это приводит к созданию нужного давления (от 3 до 6 бар), вывод же осуществляется через патрубок.

Возвратно-поступательное движение отсутствует, и это залог стабильного хода. Подключение к электрическому мотору может осуществляться напрямую, что снижает потери энергии.

Динамические

Данное компрессорное оборудование – это установки либо центробежного, или же осевого типа. В первом случае газ попадает на рабочее колесо под действием центробежной силы и создает разреженное пространство со стороны всасывания. Давление повышается в диффузоре, гасящем поток. Во второй же ситуации рабочая среда перемещается между лопатками ротора, постепенно меняя свою скорость и сжимаясь.

Их эксплуатационные характеристики – это:

Производительность компрессоров: определение и сравнение

На уровне терминологии это объем воздуха (чаще всего, хотя в принципе – любой среды), нагнетаемого в минуту (в нашем случае, но вообще могут быть приняты и другие единицы времени). Может указываться на всасе или на выходе (актуально для поршневых компрессоров), и два этих показателя, естественно, должны отличаться друг от друга. Производительность компрессора указывается для разных условий по всасыванию.

определение компрессора

Если указана единица измерения Nm3/min (N — нормальные условия), то условия следующие — температура 0°С, абсолютное давление 101325 Па (760 мм рт. ст.), относительная влажность 0%.

Но чаще всего, производительность указывается по FAD (Free Air Delivery). В этом случае, она замерена в соответствии с ISO 1217 приложение C (чаще всего именно это приложение), и условия на входе в компрессор принимаются такие — температура 20°С, давление 1 бар, относительная влажность 0%.

Казалось бы, разница не большая. В одном случае температура на всасе 0°С, в другом — 20°С. Но на практике же, производительность компрессора при 0°С на 8 % меньше, чем производительность того же компрессора при 20°С.

Это может быть критичным для оборудования, потребляющего сжатый воздух. Поэтому, при выборе компрессора для оборудования, нужно учитывать условия, при которых указано потребление сжатого воздуха этим оборудованием.

По данному показателю все модели классифицируются на:

  • малой производительности – до 3,5 м3/мин;
  • средней – от 3,5 до 85 м3/мин;
  • высокой – более 85 м3/мин.

Естественно, нужно ориентироваться не только на этот показатель. Простота конфигурации тоже важна, ведь от нее зависит общая надежность и количество отказов. Легкий вес и компактные размеры дают больше вариантов монтажа. Плавность подачи предотвращает преждевременный выход из строя отдельных клапанов или других элементов. Например, возможность монтажа без заливки мощного фундамента, которая упрощает и удешевляет ввод в эксплуатацию.

Особенности безмасляных приборов

Данный вариант может быть незаменимым в некоторых ситуациях. Почему? Потому что на выходе дают на 100% чистый воздух, без каких-либо примесей, а это актуально для предприятий с высокими требованиями к качеству сжатого воздуха.

как выглядит компрессор

Такая техника востребована в фармацевтическом секторе, в медицинских учреждениях, в пищевой промышленности, на определенных химических заводах. Хотя в других сферах, где требуется применение безмасляного сжатого воздуха, она тоже является актуальной – благодаря следующим своим преимуществам, которые мы покажем на примере наших безмасляных компрессоров серии LENTO:

  • нет необходимости в использовании магистральных фильтров в системе подачи сжатого воздуха, в большинстве случаев;
  • встроенный рефрижераторный осушитель и отсутствие магистральных фильтров в системе сводит к минимуму перепад давления. Это снижает потребление электроэнергии, которое компрессор затрачивает для поддержания требуемого давления в сети;
  • конденсат после компрессора может быть слит в канализацию без дополнительной очистки;
  • высокая надежность и значительно меньшие затраты на обслуживание и ремонт, в сравнении с двухступенчатыми безмасляными компрессорами;
  • прямой привод передает мощность от электродвигателя к винтовому блоку с эффективностью 99,9%, в отличие от двухступенчатых винтовых блоков, эффективность которых примерно 98% из-за потерь на зубчатом редукторе;
  • низкая скорость вращения роторов винтового блока – это меньшая нагрузка на подшипники и низкий уровень шума, в сравнении с двухступенчатыми блоками.

Преимущества масляных агрегатов

  • В процессе работы детали блока сжатия покрываются масляной пленкой, предотвращая преждевременный износ в результате трения, а также повышая герметичность в камере сжатия, за счет чего повышается КПД.
  • Материалы и технологии, применяемые в производстве, сравнительно дешевы, поэтому стартовые затраты на приобретение такой техники сравнительно низки, что удобно в условиях ограниченного бюджета.

Особенности эксплуатации

Назначение компрессора воздушного (да и любого другого тоже) – нагнетать рабочую среду в штатном режиме, а это возможно только в том случае, когда все его узлы и элементы исправны.

Поэтому важную роль в бесперебойной работе играет проведение планового технического обслуживания компрессора. Делать это необходимо своевременно, в соответствии с руководством по эксплуатации. Причем, важно не только проведение непосредственно работ, но и регулярный осмотр оборудования для заблаговременного выявления возможных неисправностей.

Не менее важно, использование оригинальных расходных материалов. От этого напрямую зависит бесперебойность работы и срок службы оборудования.

Правила безопасности во время работы

Каким бы ни был тип используемого оборудования – стационарным или мобильным, поршневым или винтовым, – есть определенные условия, которые необходимо соблюдать в штатном режиме. Следует:

  • следить за стабильностью напряжения, подаваемого на клеммы компрессора. Большие просадки и скачки недопустимы.
  • контролировать состояние магистральных трубопроводов, по которым проходит сжатый газ от компрессора. Утечки приводят к просадке давления у потребителей, и увеличению наработки компрессора.
  • не допускать превышение давления в пневматической сети предприятия выше допустимой нормы. Необходимо установить предохранительные клапаны на участках трубопровода и ресиверах

Техника безопасности предполагает надзор и обслуживание. Назначение и устройство компрессора винтового типа подразумевает работу в автоматическом режиме, но не избавляет от решения плановых вопросов.

Уход

Его нужно поручать специалистам, прошедшим подготовку, и они в процессе проведения работ должны использовать только рекомендованные производителем техники расходные материалы и запчасти. Если агрегат находится на гарантии, все работы должны проводится сотрудниками сертифицированного сервисного центра.

Все виды ремонта, испытания, проверки необходимо проводить в соответствии с эксплуатационной документацией, а итоги работ фиксировать в журнале тех. обслуживания.

Критерии выбора компрессорного оборудования

Определяясь, обращайте внимание на следующие параметры:

  • производительность – объем воздуха на выходе;
  • максимальное рабочее давление;
  • степень очистки рабочей среды.

И сравнивайте их с теми характеристиками, которые нужно обеспечить на вашем объекте.

Системы управления

Контроллеры современных компрессоров обеспечивают работу компрессора полностью в автоматическом режиме. В самом простом случае, система опирается на показания датчика давления на выходе из компрессора. Режимы работы компрессора переключаются в зависимости от потребления газа.

Можно организовать удаленный контроль и управление компрессорным оборудованием.

Как выглядит компрессор бытового типа

для чего служит компрессор

Он небольшой по габариту, обычно мобильный (на колесном шасси), с ресивером объемом до 100 л. Несмотря на свою миниатюрность, может обеспечивать:

  • давление до 8 бар;
  • производительность до 350 л/мин.

Сфера применения

Компрессоры небольшой мощности используются для пневматического инструмента: к ним подключаются гайковерты и шуруповерты, шлифмашины и пескоструйные аппараты.

Практически любое промышленное предприятие эксплуатирует те или иные виды компрессорного оборудования.

Сферы применения компрессоров можно условно разбить на три направления:

— для обеспечения работы исполнительных устройств (пневмоцилиндры, роботы, станки, пневмопистолеты и т.д.)

— технологический процесс (барботаж, охлаждение, пескоструй, покраска, плазменная резка и т.д.)

— транспортировка и перекачка газа.

Заключение

Сегодня это актуальная техника, замены которой, на текущий момент, не существует. Важно только грамотно выбрать тип и эксплуатационные характеристики модели под свои требования. Мы поможем вам определиться – обращайтесь в ALMiG и подробно опишите свой случай. В рамках консультации мы посоветуем конкретную модель, расскажем, какими особенностями обладает этот компрессор (для чего предназначен именно этот экземпляр), и предоставим вам его по взаимовыгодной цене.

Читайте также: