Как измерить полное давление вентилятора трубкой пито

Обновлено: 17.05.2024

Авторы Alex London, Юлия Захаренко-Березянская: перевод, Георгий Марховский, компания Novenco: техническое редактирование

Правильный выбор вентилятора для системы вентиляции должен основываться на правильной методике.

Это — простое, но важное условие. Однако в настоящий момент в специализированных изданиях, а также научной литературе приводится множество противоречивых методов подбора. Но, несмотря на множество методов, законы аэродинамики расставляют вещи по своим местам, недопуская противоречий.

Графическое изображение аэродинамических составляющих в вентиляционной системе

Графики на рис. 1 и 1a показывают взаимоотношение всех давлений, существующих в работающей системе, где:

F t — полное давление вентилятора — полное сопротивление системы;

F VP 0 — динамическое давление на выходе из вентилятора;

F VPi — динамическое давление на входе в вентилятор;

F s — статическое давление вентилятора;

SP s — полное статическое давление системы;

TP i and TP 0 — полное давление на входе и выходе из системы в точке

SP i и SP 0 — статическое давление на входе и выходе системы в некой точке;

V P i and V P 0 — динамическое давление на входе и выходе системы в некой точке.

Image

Image

Путаница

В технической литературе некоторое замешательство вызывает применение статического давления. Разница в терминологии и природе SP s и F s четко изображена на графиках рис. 1 и 1a .

Полное статическое давление системы есть разница статических давлений на входе и на выходе, или SP s = SP 0 - SP i .

Полное статическое давление вентилятора есть разница его полного и динамического давлений, или F s = F t - F VP 0 .

Так как статическое давление ни системы ( SP s ), ни вентилятора ( F s ) не показывает то количество энергии, которую должен передать системе правильно подобранный вентилятор, они не в коем разе не являются базой для его подбора.

В руководстве ASHRAE сказано «Полный напор вентилятора является настоящим индикатором энергии, которую передает вентилятор потоку воздуха… Потери энергии в системе воздуховодов могут рассматриваться только как потери полного давления…

Однако такой подход явно противоречит, следующему утверждению, приведенном в том же руководстве ASHRAE «Сопротивление системы определяется полным давлением… Величина статического давления, необходимая для подбора вентилятора, когда полное давление известно, находится по следующей формуле:

В таком случае естественно возникают следующие вопросы:

Согласно руководству ASHRAE, при подборе вентилятора необходимо пройти следующие шаги:

Пример расчёта

Процесс выбора вентилятора может быть наглядно продемонстрирован на следующем примере, где для одних и тех же расхода воздуха 5100 м 3 /ч и статического давления F s = 250 Па подобраны два различных типоразмера вентиляторов ( табл. 1, 2 ).

Image

Image

В первом случае, проектировщик выбирает вентилятор типоразмера 20 PLR. Во втором случае — более дешевый — 12 PLR. ( табл. 2 ). В обоих случаях вентиляторы обладают одинаковыми характеристиками по расходу воздуха и статическому давлению, однако значительно отличающимися значениями полного напора.

На графике рис. 2 показана работа системы в обоих вариантах:

Image

Вентилятор 20 PLR, 5 100 м 3 /ч при F s = 250 Па; 1 000 об/мин:

❏ Парабола 0-1-3 показывает характеристику вентиляционной системы с расходом воздуха 5 100 м 3 /ч, при статическом давлении: F s 1 =линия 1-1c = 250 Па.

❏ Парабола 0-1с характеризует динамическое давление на выходе из вентилятора: F VP 01 = линия 1b-1c = 25 Па.

Вентилятор 12 PLR, 5 100 м 3 /ч при F s = 250 Па; 3 200 об/мин:

❏ Парабола 0-2 характеризует вымышленную вентиляционную систему с расходом воздуха 5 100 м 3 /ч, при статическом давлении F s 2 = линия 2-2b = 250 Па.

❏ Парабола 0-2b-3c характеризует динамическое давление на выходе из вентилятора: F VP 02 =линия 2b-1b = 200 Па.

Вентилятор 12 PLR, 5 800 м 3 /ч при F s = 250 Па; 3,200 об/мин:

❏ Парабола 0-1-3 характеризует проектируемую вентиляционную систему с расходом воздуха 5 800 м 3 /ч, при статическом давлении: F s 3 = линия 3-3c = 175 Па.

❏ Парабола 0-2b-3c характеризует динамическое давление на выходе из вентилятора: F VP 03 =линия 3c-3b = 250 Па.

Нюанс первый

Табл. 1, табл. 2 и график рис. 2 показывают ошибку, которая случается при использовании статического давления F s .

Вентиляторы 20 PLR и 12 PLR с одинаковым статическим напором F s (250 Па) обладают разными полными напорами F t . Вентилятор 20 PLR имеет полный напор F t = 275 Па, а вентилятор 12 PLR: F t = 450 Па. В результате, реальная производительность вентилятора 12 PLR в вентиляционной системе приближается к 5 800 м 3 /ч при F t = 425 Па и F s = 175 Па.

В табл 3 представлены вентиляторы из ассортимента производителя для воздухообмена 5 100 м 3 /ч при статическом напоре F s в 250 Па (Точка a на графике рис. 3 ).

Image

Image

График рис. 3 показывает кривую-характеристику системы для каждого вентилятора из таблицы, которая отличается от нашей проектируемой системы. При этом, парабола 0-а — условная кривая для проектируемой системы вентиляции с расходом воздуха 5 100 м 3 /ч при напоре в 250 Па.

Нюанс второй

Статический напор F s — это искусственно полученная величина, которая передаётся вентилятором в систему только вместе с составляющей динамического напора F VP 0 , образуя полный напор F t .

Следовательно, несмотря на одинаковые значения расхода воздуха и статического напора F s , разные вентиляторы ( табл. 3 , график рис. 3 ) располагают разным полным напором F t . График рис. 3 показывает, что в случае, когда выбор вентилятора основывается на значении F s , ни один из вентиляторов не обеспечивает требования проектируемой системы.

Заключение

В данной статье графически доказано, что метод выбора вентилятора на основе статического давления F s неприменим.

Важно помнить, что, какой бы из методов расчета системы вентиляции не применялся (равных сопротивлений, постоянных скоростей и т.д.), результат получают в виде полного, а не статического давления.

Также заслуживает внимание тот факт, что как расчеты падения давления, так и производительности вентилятора, находят конечное отражение в значениях полного давления. Таким образом, вполне очевидно и логично утверждение, что значение полное давление является основополагающим при выборе вентилятора.

Примечание редакции

В этой статье высказано одно из мнений на тему о принципах подбора вентиляторов, которая актуальна и для украинских вентиляционщиков. Со своей стороны, обратившись к ним, мы услышали одно уточнение к изложенному выше: статический напор всё-таки используется для подбора вентиляторов — для систем с неким наддуваемым объёмом. Это могут быть системы с переменным расходом воздуха или системы раздачи воздуха через общее подпольное пространство, камеры статического давления и т.д. Так что метод подбора по статическому давлению также имеет право на жизнь. Именно поэтому у некоторых производителей даже можно задавать в расчётных программах принцип подбора: по полному или по статическому давлению. ■

Литература

Будем благодарны, если воспользуетесь одной из этих кнопок:

Полное или частичное воспроизведение материала, в том числе в электронных СМИ,допускается только в их неизменном виде.

Публикация должна сопровождаться активной гиперссылкой на оригинал или главную страницу журнала С.О.К.

Для измерения скорости воздушного потока, как правило, используются три типа приборов, отличающихся диапазонами измерений и рабочей температурой:

  • Трубки Пито
  • Крыльчатые датчики потока/Анемометры с крыльчаткой
  • Термоанемометры с измерительной головкой
Трубки Пито

Скорость воздушного потока определяется динамическим и статическим давлением. Трубки Пито имеют прочную конструкцию, надежны, изготовлены из нержавеющей стали или никелированной латуни. Они подсоединяются к приборам ALMEMO ® с помощью силиконовой трубки и модуля дифференциального давления.

Преимущества:
Трубки Пито просты в обращении и особенно подходят для измерения высоких скоростей потока, в условиях экстремальных нагрузок и высоких температур (до 600°C в зависимости от модели).

Недостатки:
Результаты измерений трубкой Пито зависят от температуры, от точности ориентации прибора в потоке, имеют ограниченную точность (не работают при низких скоростях потока), чувствительны к турбулентным потокам.

Крыльчатые датчики потока

Скорость воздушного потока определяется по измерениям частоты вращения крыльчатки. Данные приборы являются чувствительными датчиками с точно подогнанными алмазными подшипниками, что обеспечивает высокую точность измерений.

Преимущества:
Высокая точность измерений, нечувствительны к турбулентным потокам.

Недостатки:
Чувствительны к механическим повреждениям, строго направленные.

Термоанемометры

Термоанемометры – это высокочувствительные датчики для определения температуры и скорости газового потока. Принцип измерения: нагретый чувствительный элемент охлаждается потоком воздуха. При этом ток в цепи управления пропорционален скорости потока.

Преимущества:
Возможны измерения при самых малых скоростях воздушных потоков (т.е. измерение тяги), возможность измерять скорость потока в разных направлениях.

Недостатки:
Чувствительны к механическим повреждениям и загрязнениям окружающей среды, чувствительны к турбулентным потокам, высокое потребление тока, ограничения по температуре окружающей среды.

Поправочные коэффициенты для точных измерений скорости воздушных потоков
Температура воздуха 940 мбар 960 мбар 980 мбар 1000 мбар 1020 мбар 1040 мбар
–30°C 0.942 0.932 0.922 0.913 0.904 0.895
–20°C 0.961 0.951 0.941 0.932 0.923 0.914
–10°C 0.980 0.970 0.960 0.950 0.941 0.931
0°C 0.998 0.988 0.978 0.968 0.958 0.949
10°C 1.016 1.005 0.995 0.985 0.975 0.966
20°C 1.035 1.024 1.013 1.003 0.993 0.983
30°C 1.051 1.040 1.029 1.019 1.009 0.999
40°C 1.069 1.057 1.047 1.036 1.026 1.016
50°C 1.085 1.074 1.063 1.052 1.042 1.031
60°C 1.102 1.09 1.079 1.068 1.057 1.047
70°C 1.118 1.106 1.095 1.084 1.073 1.063
80°C 1.135 1.123 1.111 1.100 1.089 1.078
90°C 1.151 1.139 1.127 1.116 1.105 1.094
100°C 1.167 1.154 1.142 1.131 1.120 1.109
150°C 1.242 1.229 1.216 1.204 1.192 1.180
200°C 1.314 1.300 1.287 1.274 1.261 1.249
250°C 1.381 1.367 1.353 1.339 1.326 1.313
300°C 1.446 1.431 1.416 1.402 1.388 1.375
400°C 1.567 1.55 1.534 1.519 1.504 1.489
500°C 1.68 1.663 1.646 1.629 1.613 1.597
600°C 1.784 1.766 1.748 1.73 1.713 1.696
700°C 1.884 1.865 1.846 1.827 1.809 1.791

Истинная скорость воздуха зависит от температуры воздуха и от барометрического давления воздуха. Для получения точного результата, измеренные значения умножают на коэффициенты поправок, представленные в таблице.

Пример:
Измеренная скорость воздуха 50 м/сек., температура воздуха +80°C, атмосферное давление 960 мбар.
Измеренную величину необходимо умножить на коэффициент 1.123. Истинная скорость воздуха составит 56.1 м/сек..

Скорость воздуха для выбранных значений динамического давления
(Трубка Пито/Прандтля, T = 22°C)
Динамическое давление [Па] Динамическое давление [миллиметров водяного столба] Скорость воздуха [м/с]
1 0.1 1.29
2 0.2 1.83
3 0.3 2.24
4 0.41 2.59
5 0.51 2.89
10 1.02 4.09
20 2.04 5.78
30 3.06 7.08
40 4.08 8.18
50 5.1 9.14
100 10.2 12.93

Другие материалы:


Для измерения давления в жидких и газообразных средах, в зависимости от задачи и характеристик среды измерения (вязкость, наличие примесей, макс. рабочее давление), широко применяются следующие типы датчиков.

Читайте также: