Регулятор оборотов вентилятора схема

Обновлено: 18.04.2024

Приветствую Вас! Это моя первая запись на ПС.
Комп оборудован самодельной СВО,холодно,тихо,разгон -все замечательо.В системнике два вентилятора,120мм обдувал видеокарту(x1950gt Palit 512MB),а 250мм работает на вдув(корпус Aerocool) и третий в БП.Вентиляторы подключались параллельно через эмиттерный повторитель к разъему кулера видеокарты(2-pin),а сам кулер уступил место водоблоку.Схема работы очень проста,напряжение(читай обороты) на коннекторе кулера видеркарты регулируется в Riva Tuner и вентиляторы крутятъся как мне угодно.
Все было хорошо до смены видеокарты на GF8800 GT 512MB Palit(синий кулер,не Sonic).Карта была подвегнута недельной пытке(разгон и тесты, на чем только можно),после чего поставил на нее "воду",а кулер, соответственно.

Приветствую Вас! Это моя первая запись на ПС.
Комп оборудован самодельной СВО,холодно,тихо,разгон -все замечательо.В системнике два вентилятора,120мм обдувал видеокарту(x1950gt Palit 512MB),а 250мм работает на вдув(корпус Aerocool) и третий в БП.Вентиляторы подключались параллельно через эмиттерный повторитель к разъему кулера видеокарты(2-pin),а сам кулер уступил место водоблоку.Схема работы очень проста,напряжение(читай обороты) на коннекторе кулера видеркарты регулируется в Riva Tuner и вентиляторы крутятъся как мне угодно.
Все было хорошо до смены видеокарты на GF8800 GT 512MB Palit(синий кулер,не Sonic).Карта была подвегнута недельной пытке(разгон и тесты, на чем только можно),после чего поставил на нее "воду",а кулер, соответственно, отправился отдыхать.
Теперь ближе к делу.На этой карте кулер имеет четыре контакта и управляется ШИМ-сигналом, моя схема отказалась регулировать обороты.Пришлось расширить свои познания о технологии широтно-импульсной модуляции в интернете.Решение оказалось довольно простым -применить полевой транзистор,а не биполярный.Cхему приводить не буду,достаточно фотографии "изделия".



Паяем!
Я применил полевой транзистор D50NH,всем хорошо знакомый MOSFET.Донором послужила видеокарта 7600gt Palit,павшая жертвой вольтмода более года назад.Транзистор включается в разрыв черного провода("-" или "земля"), ШИМ-сигнал подается на затвор транзистора с видеокарты(на моей это синий провод или 1-й контакт слева).Желательно это сделать через резистор 1-2кОм "на всякий случай",т.к полевики боятся статики.Как видно на фото,питается вентилятор через 3-pin разъем и подключен к материнке,можно и к видеокарте подкючить,при наличии соответствующего разъема.Если все подкючено верно и транзистор не "битый",вентиль становится "послушным".
Таким не хитрым способом можно регулировать любой вентилятор.Не редко меняют "боксовый" кулер с 4-pin(ШИМ) коннектором на более эффективный,но оснащенный вентилятором с 3-pin разъемом,при этом на материнке остается невостребованным именно четвертый контакт с ШИМ сигналом.Теперь и его задействовать можно,например, у меня подключен корпусной 250мм вентиль,но им уже рулит Speedfan.
Надеюсь,мой опыт кому-то окажется полезным.
P.S
На фото черный провод на маленьком 2-pin разъеме ИЗОЛИРОВАН! Лень отрезать было.
Мониторинг оборотов в этой схеме не РАБОТАЕТ! Провод таходатчика необходимо отключить(по совету крупного спецталиста),во избежание повреждения схемы мониторинга оборотов или вентилятора!

Мониторинг оборотов работает.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.


Процесс изготовления.
По сути, управляющий сигнал представляет собой меандр, а от частоты следования импульсов и зависит скорость вращения вентилятора.
Итак, мастер спроектировал простенькую схему на основе очень популярной микросхемы NE555 . Для экономии места был выбрано исполнение в SOP-8 корпусе.



Также он развел двухстороннюю плату, модель которой Вы можете скачать по ссылке , любезно предоставленной мастером.








Зафиксировав плату на магнитных держателях , мастер размещает и припаивает на свои места микросхему. В данном случае автор использует паяльник T12 .




Пайку SMD компонентов намного удобнее и быстрее осуществлять на нагревательной пластине . Достаточно нанести немного паяльной пасты на площадки, разместить все SMD компоненты, и включить нагрев. Детали самостоятельно отцентрируются и припаяются.






















Как видно, дует этот вентилятор на все свои 28 Ватт. Напряжение питания 12В, потребляемый ток до 2,4А.
Теперь можно плавно регулировать обороты вентилятора.


Конечно, существуют и заводские версии — одноканальный программируемый регулятор оборотов с датчиком температуры для одного 4pin вентилятора. Режимы выбираются кнопкой.
Еще один регулятор оборотов с двумя каналами для 4pin вентиляторов. Программируется кнопками, есть светодиодный экран.

Благодарю автора за простую схему регулятора оборотов для четырехпроводных вентиляторов.


Всем хорошего настроения, крепкого здоровья, и интересных идей!
Подписывайтесь на телеграм-канал сайта, чтобы не пропустить новые статьи.

Авторское видео можно посмотреть здесь.

Вентилятор очень часто используется во многих бытовых приборах. Чтобы этот аппарат прослужил долго, применяется регулятор скорости вращения вентилятора. Он помогает установить нужную скорость вращения лопастей. Этот прием снижает шум прибора и продлевает срок его службы.

Регулятор скорости вентилятора

Что из себя представляют регуляторы скорости вращения вентилятора?

Регулятор скорости (его еще называют контроллер) помогает снизить обороты, когда это необходимо, либо увеличить их. По существу, он изменяет напряжение, подающееся на устройство. Этот небольшого размера прибор подсоединяется к оборудованию по специальной схеме.

Зачем нужен?

Если вентилятор постоянно работает на максимальной мощности, это уменьшает срок его службы. Прибор быстро изнашивается и ломается.

Регулирование скорости не только снижает износ вентилятора, но и уменьшает потребление электроэнергии.

Функции регулятора скорости вращения:

  • уменьшение износа механизмов,
  • снижение шума,
  • экономия электроэнергии.

Как работает: принцип действия и устройство

Принцип работы регулятора скорости состоит в том, чтобы изменять напряжение и частоту оборотов двигателя. Это влияет на воздухообмен и изменяет мощность воздушного потока.

regulator

Для управления скоростью могут использоваться разные методы:

  1. Изменение напряжения, подающегося на обмотку.
  2. Изменение частоты тока.

Второй метод почти не используется, так как частотные приводы очень дорого стоят, во много раз больше самого вентилятора, и не всегда целесообразно их приобретать. В основном, практикуется первый способ.

princip

Виды регуляторов оборотов

По принципу регулирования скорости различают несколько видов регуляторов:

Симисторный регулятор наиболее распространенный, он может охватывать даже не один, а несколько двигателей. Главное, чтобы величина тока не превышала предельную величину.

Частотные модели могут быть использованы в любых пределах от 0 до 480 В, их применяют для трехфазных двигателей вентиляторов мощностью до 75 кВт.

Трансформаторные регуляторы применяются для более мощных вентиляторов. Они однофазные или трехфазные, позволяют плавно снижать скорость оборотов, могут регулировать несколько вентиляторов.

Схемы подключения регуляторов оборотов вентилятора

Рассмотрим схемы подключения различных регуляторов.

Самым распространенным прибором является симисторный или тиристорный контроллер. Его можно подключить самостоятельно, используя схему. Каждый из тиристоров уменьшает напряжение. Регулировка производится при помощи блока управления. Мощность прибора ограничена, большого напряжения он не выдерживает.

chema


Важные моменты:

  • Двигатель вентилятора должен иметь защиту от перегрева.
  • Нельзя использовать в качестве регуляторов диммеры от осветительных приборов.

Трансформаторный регулятор имеет следующий принцип работы:

На входе — питающее напряжение 220 В. Обмотка имеет несколько ответвлений, к которым подключается нагрузка, и тогда напряжение уменьшается. При понижении напряжения снижается и потребление электроэнергии. С помощью переключателя мотор подключается к нужной части обмотки и тогда напряжение меняется.

Трансформатор с электронным управлением работает по другой схеме. Он имеет транзисторную схему, и, модулируя импульсы, может менять напряжение плавно. Чем короче импульсы и длиннее паузы между ними, тем меньше напряжение.

chema2

Ступенчатый трансформаторный регулятор

В работе этого прибора используется трансформатор. Это обычный трансформатор, только у него одна обмотка и от части витков есть отводы.

Управление регулятора осуществляется путем ступенчатого изменения напряжения. На низких скоростях уровень шума понижен.

Обычно используется пять ступеней напряжения, то есть вентилятор будет иметь пять скоростей вращения. Такой регулятор можно использовать и для реверсивных вентиляторов, и для нескольких аппаратов одновременно. Максимальная мощность вентилятора должна быть не более 80 Вт.

Переключение скоростей можно сделать автоматическим, если подключить таймер или датчики температуры и влажности.

Автотрансформатор с электронным управлением

Эти модели относятся к разряду наиболее надежных и мощных. По цене это наиболее дорогой прибор. Он имеет небольшие габариты и вес.

Работает такой регулятор по принципу широтно-импульсной модуляции. Изменения импульсов и пауз между ними дает изменение напряжения и, соответственно, скорости вращения вентилятора.

Прибор имеет пониженный уровень шума, скорость оборотов может понижаться или повышаться ступенчато, в соответствии с понижением или повышением напряжения.

Автотрансформатор может использоваться и на производстве, где стоят более мощные вентиляторы. Он устойчив к перегрузкам и может использоваться в долговременной непрерывной работе.

Тиристорные и симисторные контроллеры

Это самые распространенные приборы для регулировки вращения вентиляторов. Они используются для однофазных вентиляторов переменного тока. Тиристорный контроллер изменяет скорость вращения в большую или меньшую сторону в зависимости от изменения напряжения. Может быть установлен в приборах, где есть защита от перегрева.

Симисторный регулятор — это разновидность тиристорного. В нем используется симистор, который равен двум параллельно включенным тиристорам. Приборы могут применяться как для переменного, так и для постоянного тока. Скорость регулирования — от минимально необходимого напряжения до 220 В.

Они имеют небольшой размер и плавно переключают скорость, имеют простую конструкцию. К недостаткам можно отнести повышенный шум и небольшой срок службы.


Всем доброго времени. Сейчас мы поговорим о регулировании скорости охлаждающих вентиляторов с ШИМ – широтно-импульсной модуляцией (PWM). Также изучим практический проект схемы контроллера для вентилятора или мощных светодиодов, который можно сделать из нескольких деталей.

В последнее время растет интерес к схемам драйверов для управления скоростью охлаждающих вентиляторов, используемых в электронном оборудовании. Простейшим двухпроводным драйвером является схема включения / выключения, которая запускает вентилятор с помощью управляющего сигнала, когда температура датчика превышает пороговое значение, и останавливает его, когда температура падает ниже порогового уровня.

В более сложных версиях драйверов используется линейная схема управления напряжением, в которой постоянное напряжение, подаваемое на вентилятор, меняется с помощью регулятора напряжения. Чтобы вентилятор работал на более низкой скорости, напряжение снижают, а для работы на более высокой скорости – повышают.

Наиболее современная схема драйвера для управления скоростью вентилятора использует метод ШИМ. В этой схеме драйвера управляющий сигнал с широтно-импульсной модуляцией обычно подается на полевой транзистор, который подключен к стороне высокого или низкого уровня вентилятора. Вентилятор будет включаться / выключаться с определенной частотой, а скорость вращения вентилятора регулируется рабочим циклом сигнала ШИМ.

Типы вентиляторов постоянного тока

Существует три основных типа вентиляторов постоянного тока (они же кулеры): двухпроводные, трехпроводные и четырехпроводные.

  • Двухпроводной вентилятор имеет два контакта – питание и заземление. Этим вентилятором можно управлять либо путем изменения напряжения постоянного тока, либо с помощью управляющего сигнала ШИМ.
  • У трехпроводного вентилятора есть сигнал тахометра, который показывает скорость вращения. Этим вентилятором также можно управлять, изменяя напряжение постоянного тока или используя низкочастотный управляющий сигнал ШИМ.
  • Четырехпроводной вентилятор имеет специальный вход PWM, который можно использовать для управления скоростью.


Вентиляторы PWM и правила управления

Сигнал ШИМ прямоугольного типа должен подаваться на вход PWM вентилятора и соответствовать следующим спецификациям:

  • Целевая частота: 25 кГц, допустимый диапазон от 21 кГц до 28 кГц
  • Максимальное напряжение для низкого логического уровня: VIL = 0,8 В
  • Абсолютный максимальный получаемый ток: Imax = 5 мА (ток короткого замыкания)
  • Абсолютный максимальный уровень напряжения: Vmax = 5,25 В (напряжение холостого хода)
  • Допустимый диапазон рабочего цикла: от 0% до 100% (не инвертируется. Рабочий цикл 100% PWM / 5 В приводит к максимальной скорости вентилятора)

Внешний подтягивающий резистор здесь не нужен, так как сигнал подтягивается до 3,3 В / 5 В внутри вентилятора. Кроме того, работа при цикле ШИМ ниже 20% официально не поддерживается в спецификации (неопределенное поведение). Тем не менее, большинство вентиляторов PWM могут работать при нагрузке ниже 20% и остановятся при рабочем цикле лишь 0%. Они работают на полной номинальной скорости при отсутствии входного сигнала ШИМ.

Внимание: подключение напряжения питания 12 В к выводу ШИМ приведет к немедленному повреждению вентилятора!

Далее показано изображение трехпроводного кулера. Кажется что это обычный бесщеточный мотор постоянного тока (BLDC) с выходом тахо-сигнала, но это вентилятор с ШИМ (KFB-1412H от Delta Electronics), сделанный для PS3, а его третий провод – для управления скоростью вентилятора.

ШИМ-контроллер вентилятора охлаждения

Если надо подключить этот вентилятор, просто подайте 12 В на коричневый (+ V) и черный (GND) провода, а на серый (PWM) подайте последовательность импульсов уровня TTL (5 В), близкую к 25 кГц от сигнала генератора, и изменяйте коэффициент заполнения последовательности импульсов (0–100%), чтобы отрегулировать скорость.

ШИМ-контроллер вентилятора охлаждения

Обычно скорость кулера с ШИМ масштабируется линейно с рабочим циклом сигнала PWM между максимальной скоростью при 100% и указанной минимальной скоростью при 20%. Например, если вентилятор с PWM имеет максимальную скорость 2000 об / мин и минимальную скорость 450 об / мин, он будет работать со скоростью 2000 об / мин при 100% PWM, 450 об / мин при 20% и около 1100 об / мин при 50% PWM.

ШИМ-контроллер вентилятора охлаждения

Некоторые производители рекомендуют использовать для управления схему типа CMOS-инвертора, подобную показанной выше.

Схема самодельного ШИМ контроллера кулера

ШИМ-контроллер вентилятора охлаждения

Основной выход PWM подключен к силовому транзистору (T1) для управления нагрузкой 12 В. Как видите, дополнительный инвертированный выход ШИМ также доступен для других целей. На самом деле столь мощный транзистор TIP41C (T1) в этой конструкции немного излишний, можете выбрать другой.

ШИМ-контроллер вентилятора охлаждения

Шестиэлементный триггер Шмитта CD 40106 является основой этого проекта. Микросхема недорогая и будет работать в широком диапазоне напряжений.

ШИМ-контроллер вентилятора охлаждения

Представленная простая конструкция может использоваться для управления различными типами вентиляторов и ламп (в том числе светодиодных). Генератор прямоугольных сигналов CD40106 генерирует управляющий ШИМ на основе частоты и рабочего цикла, установленных соответствующими компонентами синхронизации RC. Конечный выходной сигнал может в дальнейшем использоваться разными способами, при условии что он настроен правильно для предлагаемого устройства.

Читайте также: