Температура холодильника равна 20 градусов какова должна быть температура нагревателя

Обновлено: 06.05.2024


Так как газ отдает 70 \(\%\) тепоты холодильнику, то только 30 \(\%\) идет на работу цикла.
Следовательно КПД равен \(\eta=30\%\) . \[\eta=1-\dfrac>>>>\] Выразим температуру холодильника: \[T_>=T_>\cdot(1-\eta)=400\text< К>\cdot(1-0,3)=280 \text< К>\]

В цикле Карно абсолютная температура нагревателя в 2,5 раза выше абсолютной температуры холодильника. Какая доля теплоты, полученной рабочим телом от нагревателя, передается холодильнику? (Ответ дайте в процентах.)

Тепловая машина с КПД 40 \(\%\) за цикл работы отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях, округлив до целых.)


КПД цикла можно найти по формуле: \[\eta=1-\dfrac>>>>\] Выразим количество теплоты, которое машина получает от нагревателя за цикл: \[Q_>=\dfrac>>\] \[Q_>=\dfrac> \approx 167 \text< Дж>\]

Температура холодильника тепловой машины 400 К, температура нагревателя на 600 К больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах.)

Тепловая машина за один цикл совершает работу 20 Дж и отдаёт холодильнику количество теплоты 80 Дж. Температура нагревателя этой машины 600 К, а температура холодильника 300 К. Во сколько раз КПД идеальной тепловой машины, работающей при тех же температурах нагревателя и холодильника, больше КПД рассматриваемой тепловой машины?


КПД идеальной тепловой машины в цикле Карно можно найти по формуле: \[\eta_=1-\dfrac>>>>\] \[\eta_ = 1-\dfrac>>=1-0,5=0,5\]
КПД рассматриваемой тепловой машины: \[\eta=\dfrac>>>>\] Зная работу тепловой машины за цикл и количество теплоты, отданное холодильнику, можно найти количество теплоты, принятое нагревателем: \[A_>=Q_>-Q_>\] \[Q_>=A_>+Q_>\] \[Q_>=20\text< Дж>+80\text< Дж>=100 \text< Дж>\] Найдем КПД рассматриваемой машины: \[\eta=\dfrac>>=0,2\] Найдем, во сколько раз КПД идеальной тепловой машины, работающей при тех же температурах нагревателя и холодильника, больше КПД рассматриваемой тепловой машины: \[\dfrac<\eta_>=\frac=2,5\]

Температура холодильника тепловой машины 800 К, температура нагревателя на 200 К больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах.)

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело - тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.


Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.



Q1 – количество теплоты полученное от нагревания


Q2 – количество теплоты, отданное холодильнику

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно - самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м 3 , s = 100 км = 10 5 м, ɳ = 25% = 0,25, ρ = 700 кг/м 3 , q = 46 × 10 6 Дж/кг.

Запишем формулу для расчёта КПД теплового двигателя:


Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:


Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:


Учитывая всё это, мы можем записать:


Время работы двигателя можно найти по формуле:


Из формулы КПД выразим среднюю мощность:


.

Подставим числовые значения величин:


После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

=


– это количество теплоты, отданное холодильнику


Задание 11 № 23296

Для приведения в действие паровой машины в топке сжигают каменный уголь. Температура в топке составляет 1200 °C. Считая, что в качестве холодильника паровая машина использует атмосферу, температура которой равна 20 °C, определите максимальный теоретически возможный КПД этой паровой машины. Ответ выразите в процентах и округлите до целого числа.

Температура нагревателя равна температура холодильника равна Тогда КПД тепловой машины равен


Задание 11 № 23328

Для приведения в действие паровой машины в топке сжигают каменный уголь. Температура в топке составляет 850 °C. Считая, что в качестве холодильника паровая машина использует атмосферу, температура которой равна 20 °C, определите максимальный теоретически возможный КПД этой паровой машины. Ответ выразите в процентах и округлите до целого числа.

Температура нагревателя равна температура холодильника равна Тогда КПД тепловой машины равен

Аналоги к заданию № 23296: 23328 Все


Задание 11 № 10640

Кусок свинца, находившийся при температуре +27,5 °C, начали нагревать, подводя к нему постоянную тепловую мощность. Через 39 секунд после начала нагревания свинец достиг температуры плавления +327,5 °C. Через сколько секунд после этого момента кусок свинца расплавится? Потери теплоты отсутствуют. (Удельная теплоёмкость свинца — 130 Дж/(кг · °С), удельная теплота плавления свинца — 25 кДж/кг.)

Зная количество теплоты, необходимое для нагревания свинца, и время, можем найти мощность нагревателя

Чтобы расплавить свинец, необходимо количество теплоты Таким образом, при том же нагревателе, кусок свинца расплавится через


Задание 11 № 10708

Кусок льда, находившийся при температуре −90 °C, начали нагревать, подводя к нему постоянную тепловую мощность. Через 63 секунды после начала нагревания лёд достиг температуры плавления. Через сколько секунд после этого момента кусок льда расплавится? Потери теплоты отсутствуют. (Удельная теплоёмкость льда — 2100 Дж/(кг · °С), удельная теплота плавления льда — 330 кДж/кг.)

Зная количество теплоты, необходимое для нагревания льда, и время, можем найти мощность нагревателя

Чтобы расплавить лёд, необходимо количество теплоты Таким образом, при том же нагревателе, кусок льда расплавится через

Аналоги к заданию № 10640: 10708 Все


Задание 25 № 3572

На графике приведена зависимость КПД идеальной тепловой машины от температуры ее холодильника. Чему равна температура нагревателя этой тепловой машины? Ответ приведите в кельвинах.

КПД идеальной машины Карно связан с температурами нагревателя и холодильника соотношением Таким образом, при фиксированной температуре нагревателя, КПД линейно зависит от температуры холодильника, что и отражает представленная на графике зависимость. Из выписанной выше формулы видно, что угловой коэффициент наклона графика связан с температурой нагревателя следующим образом.

Определим из графика угловой коэффициент, посчитав для этого тангенс угла наклона:

Следовательно, температура нагревателя тепловой машины равна


Задание 25 № 3574

На графике приведена зависимость КПД идеальной тепловой машины от температуры её холодильника. Чему равна температура нагревателя этой тепловой машины? Ответ приведите в кельвинах.

КПД идеальной машины Карно связан с температурами нагревателя и холодильника соотношением Таким образом, при фиксированной температуре нагревателя, КПД линейно зависит от температуры холодильника, что и отражает представленная на графике зависимость. Из выписанной выше формулы видно, что угловой коэффициент наклона графика связан с температурой нагревателя следующим образом.

Определим из графика угловой коэффициент, посчитав для этого тангенс угла наклона:

Следовательно, температура нагревателя тепловой машины равна

Возьмём любую точку графика, например, (1200 К, 0,2) и подставим значения в формулу для КПД машины Карно:


Задания Д13 № 6686

Идеальная тепловая машина использует в качестве рабочего тела 1 моль идеального одноатомного газа. Установите соответствие между КПД этой тепловой машины и соотношением между физическими величинами в циклическом процессе. К каждой позиции первого столбца подберите соответствующую позицию второго столбца.

ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ В ЭТОМ

1) Работа, совершаемая газом, 20 Дж; количество теплоты, полученное газом, 80 Дж.

2) Количество теплоты, отданное газом, 20 Дж; количество теплоты, полученное газом, 100 Дж.

3) Температура холодильника 300 К; температура нагревателя 375 К.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Работу, совершаемую газом можно вычислить по формуле: где — тепло, передаваемое от нагревателя, — коэффициент полезного действия. Следовательно, в случае А) работа совершённая газом равна В случае Б) — Значит, газ отдал количество теплоты, равное

КПД можно вычислить по формуле: где — соответственно температура нагревателя и холодильника. Значит, КПД для пункта 3: то есть 20%. Для случая 4: то есть 75%.

Аналоги к заданию № 6647: 6686 Все


Задание 13 № 2603

Температуру холодильника идеальной тепловой машины уменьшили, оставив температуру нагревателя прежней. Количество теплоты, полученное газом от нагревателя за цикл, не изменилось. Как изменились при этом КПД тепловой машины, количество теплоты, отданное газом за цикл холодильнику, и работа газа за цикл?

Для каждой величины определите соответствующий характер изменения:

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Если понизить температуру холодильника при неизменной температуре нагревателя, КПД идеальной тепловой машины увеличится: КПД связано с работой газа и количеством теплоты полученным газом за цикл, соотношением Таким образом, поскольку при понижении температуры холодильника количество теплоты, получаемое газом от нагревателя за цикл, не изменяется, заключаем, что работа газа за цикл увеличится. Отданное холодильнику количество теплоты можно найти из закона сохранения энергии: Так как после понижения температуры холодильника количество теплоты останется неизменным, а работа возрастет, количество теплоты отданное холодильнику за цикл работы, уменьшится.


Задание 25 № 1209

Температура нагревателя идеального теплового двигателя Карно 227 °C, а температура холодильника 27 °C. Рабочее тело двигателя совершает за цикл работу, равную 10 кДж. Какое количество теплоты получает рабочее тело от нагревателя за один цикл? Ответ приведите в килоджоулях.

Найдем значения температур нагревателя и холодильника в абсолютной шкале температур:

Приравняем две формулы для КПД цикла Карно: отсюда для количества теплоты, которое получает рабочее тело от нагревателя за один цикл, имеем:


Задание 13 № 16853

Температуру нагревателя тепловой машины Карно понизили, оставив температуру холодильника прежней. Количество теплоты, отданное газом холодильнику за цикл, не изменилось. Как изменились при этом КПД тепловой машины и работа газа за цикл?

Для каждой величины определите соответствующий характер её изменения:

3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

КПД тепловой машины Карно вычисляется по формуле: где — соответственно температуры холодильника и нагревателя, — соответственно теплоты, передаваемые холодильнику и отнимаемые от нагревателя. Работа газа в таком процессе: При понижении температуры нагревателя уменьшается КПД тепловой машины, а вместе с ней, при неизменном количестве теплоты, отданном газом холодильнику, уменьшается и работа газа.


Задание 13 № 17657

Температуру нагревателя тепловой машины Карно повысили, оставив температуру холодильника прежней. Количество теплоты, отданное газом холодильнику за цикл, не изменилось. Как изменились при этом КПД тепловой машины и работа газа за цикл?

Для каждой величины определите соответствующий характер её изменения:

3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

КПД тепловой машины Карно вычисляется по формуле: где — соответственно температуры холодильника и нагревателя, — соответственно теплоты, передаваемые холодильнику и отнимаемые от нагревателя. Работа газа в таком процессе: При повышении температуры нагревателя увеличивается КПД тепловой машины, а вместе с ней, при неизменном количестве теплоты, отданном газом холодильнику, увеличивается и работа газа.


Задание 13 № 2604

Температуру холодильника идеальной тепловой машины увеличили, оставив температуру нагревателя прежней. Количество теплоты, полученное газом от нагревателя за цикл, не изменилось. Как изменились при этом КПД тепловой машины, количество теплоты, отданное газом за цикл холодильнику, и работа газа за цикл?

Для каждой величины определите соответствующий характер изменения:

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Если повысить температуру холодильника при неизменной температуре нагревателя, КПД идеальной тепловой машины уменьшится: КПД связано с работой газа и количеством теплоты, полученным газом за цикл, соотношением Таким образом, при повышении температуры холодильника работа газа за цикл уменьшится. Отданное холодильнику количество теплоты можно найти из закона сохранения энергии: Так как после повышения температуры холодильника количество теплоты останется неизменным, а работа уменьшится, количество теплоты, отданное холодильнику за цикл работы, увеличится.

Количество теплоты, отданное газом холодильнику уменьшается, так как в последней формуле не Q2, а модуль Q2. Если модуль увеличивается, то отрицательное значение под модулем уменьшается.

— ко­ли­че­ство теплоты, от­дан­ное холодильнику. Оно входит в формулу без модуля, поскольку является положительным.

Ведь понижение КПД еще не значит, что температура тоже понизится? КПД может понизится при повышение Q1, при этом работа будет неизменной.

Если увеличить Q1, то автоматически увеличиваются Q2 и A.

Для того чтобы увеличить Q1, оставив неизменным Q2, нужно изменить цикл.


Задание 25 № 3266

Идеальная тепловая машина работает по циклу Карно, совершая за один цикл работу 2 кДж. Количество теплоты 2 кДж рабочее тело двигателя отдает за один цикл холодильнику, температура которого 17 °С. Чему равна температура нагревателя? Ответ приведите в градусах Цельсия.

Найдем значения температуры холодильника по абсолютной шкале температур: Определим, какое количество теплоты получает тепловая машина за цикл от нагревателя, по закону сохранения энергии Приравняем две формулы для КПД цикла Карно:

отсюда для температуры нагревателя имеем:

Переведем эту температуру в шкалу Цельсия:

добрый день, в условии дана температура в градусах Цельсия, хотя подразумевается она в градусах Кельвина

Перевод температуры из одной шкалы в другую взаимнооднозначен.


Задание 25 № 3268

Идеальная тепловая машина работает по циклу Карно, получая за один цикл от нагревателя 5 кДж теплоты и отдавая холодильнику З кДж теплоты. Температура холодильника 17 °С. Чему равна температура нагревателя? Ответ приведите в градусах Цельсия, округлите до целых.

Найдем значения температуры холодильника по абсолютной шкале температур: Приравняем две формулы для КПД цикла Карно:

отсюда для температуры нагревателя имеем:

Переведем эту температуру в шкалу Цельсия:


Задания Д6 B9 № 3742

Коэффициент полезного действия идеальной тепловой машины можно увеличить,

1) только уменьшив температуру нагревателя

2) только увеличив температуру холодильника

3) используя в качестве рабочего тела другой газ

4) уменьшив температуру холодильника или увеличив температуру нагревателя

Коэффициент полезного действия идеальной тепловой машины не зависит от рабочего тела и определяется соотношением: Таким образом, эту величину можно увеличить, уменьшив температуру холодильника или увеличив температуру нагревателя.


Задание 25 № 1220

Температура нагревателя идеального теплового двигателя Карно равна а температура холодильника равна Рабочее тело получает от нагревателя за один цикл количество теплоты 25 кДж. Какую работу совершает за цикл рабочее тело двигателя? Ответ укажите в килоджоулях с точностью до десятых.

Найдем значения температур нагревателя и холодильника в абсолютной шкале температур:

Приравняем две формулы для КПД цикла Карно: отсюда для работы, которую совершает рабочее тело за один цикл, имеем:

Как у вас получилось 27 Кельвин,если было в Цельсиях ?

Шкала температур Цельсия отличается от абсолютной шкалы температур только началом отсчета, величина градуса в обеих шкалах одинаковая: . Поэтому в решении и написано? может не очень подробно, что температуре соответствует температура .


Задание 1 № 25523

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.

1) Центростремительная сила, действующая на материальную точку, всегда направлена по радиусу к центру дуги окружности и касательно к траектории движения.

2) В идеальной тепловой машине КПД определяется температурой нагревателя и температурой холодильника.

3) В процессе электризации трением два тела приобретают разноимённые по знаку, но одинаковые по модулю заряды.

4) Явление радуги обусловлено исключительно особыми свойствами солнечного света, поэтому её можно наблюдать не только на Земле, но и на Луне, и на Марсе.

5) Фотоэффект в металлах вызывается исключительно видимым светом, явление не возникает при действии ультрафиолетового излучения.

1) Неверно. Центростремительное ускорение направлено к центру окружности.

2) Верно. В идеальном тепловой машине КПД определяется отношением разности температур нагревателя и холодильника к температуре нагревателя.

3) Верно. При электризации трением тела приобретают разноименные по знаку и равные по модулю заряды, т.к. происходит перераспределение электронов.

4) Неверно. Появление радуги обусловлено преломлением света в каплях воды.

5) Неверно. Возникновение фотоэффекта связано с работой выхода электронов с металла. Для большинства металлов это возможно только для ультрафиолетового света.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.


Рис. 1. Тепловой двигатель

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть 0' alt='A>0' /> , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2 ).


Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.


Рис. 3. Холодильная машина

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3 ).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4 ).


Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная — . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5 ). В этом случае машина функционирует как тепловой двигатель.


Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Читайте также: