Как рассчитать подъемную силу вентилятора

Обновлено: 17.05.2024

Вентиляторы общего назначения применяют для работы на чистом воздухе, температура которого меньше 80 градусов. Для перемещения более горячего воздуха предназначены специальные термостойкие вентиляторы. Для работы в агрессивных и взрывоопасных средах выпускают специальные антикоррозионные и взрывобезопасные вентиляторы. Кожух и детали антикоррозионного вентилятора выполнены из материалов, не вступающих в химическую реакцию с коррозионными веществами перемещаемого газа. Взрывобезопасное исполнение исключает вероятность искрообразования внутри корпуса (кожуха) вентилятора и повышенного нагревания его частей во время работы. Для перемещения запылённого воздуха применяют специальные пылевые вентиляторы. Размеры вентиляторов характеризуются номером, который обозначает диаметр рабочего колеса вентилятора, выраженный в дециметрах.

По принципу действия вентиляторы подразделяются на центробежные (радиальные) и осевые. Центробежные вентиляторы низкого давления создают полное давление до 1000 Па; вентиляторы среднего давления – до 3000 Па; и вентиляторы высокого давления развивают давление от 3000 Па до 15000 Па.

Центробежные вентиляторы изготавливают с дисковым и бездисковым рабочим колесом:


Лопатки рабочего колеса крепятся между двумя дисками. Передний диск - в виде кольца, задний - сплошной. Лопасти-лопатки бездискового колеса крепятся к ступице. Спиральный кожух центробежного вентилятора устанавливают на самостоятельных опорах, или на станине, общей с электродвигателем.

Осевые вентиляторы характеризуются большой производительностью, но низким давлением, поэтому широко применяются в общеобменной вентиляции для перемещения больших объёмов воздуха при невысоком давлении. Если рабочее колесо осевого вентилятора состоит из симметричных лопаток, то вентилятор является реверсивным.

Схема осевого вентилятора:


Крышные вентиляторы изготавливаются осевые и радиальные; устанавливаются на крышах, на бесчердачном перекрытии зданий. Рабочее колесо и осевого, и радиального крышного вентилятора вращается в горизонтальной плоскости. Схемы работы осевого и радиального (центробежного) крышных вентиляторо в:


Осевые крышные вентиляторы применяют для общеобменной вытяжной вентиляции без сети воздуховодов. Радиальные крышные вентиляторы развивают более высокие давления, поэтому могут работать как без сети, так и с сетью подключенных к ним воздуховодов.

Подбор вентилятора по аэродинамическим характеристикам.

Для каждой вентиляционной системы, аспирационной или пневмотранспортной установки вентилятор подбирают индивидуально, используя графики аэродинамических характеристик нескольких вентиляторов. По давлению и расходу воздуха на каждом графике находят рабочую точку, которая определяет коэффициент полезного действия и частоту вращения рабочего колеса вентилятора. Сравнивая положение рабочей точки на разных характеристиках, выбирают тот вентилятор, который даёт наибольший кпд при заданных значениях давления и расхода воздуха.

Пример. Расчёт вентиляционной установки показал общие потери давления в системе Нс=2000 Па при требуемом расходе воздуха Q с=6000 м³/час. Подобрать вентилятор, способный преодолеть это сопротивление сети и обеспечить необходимую производительность.

Для подбора вентилятора его расчётное давление принимается с коэффициентом запаса k =1,1:

Нв= kHc ; Нв=1,1·2000=2200 (Па).

Расход воздуха рассчитан с учётом всех непродуктивных подсосов. Q в= Q с=6000 (м³/час). Рассмотрим аэродинамические характеристики двух близких номеров вентиляторов, в диапазон рабочих значений которых попадают значения расчётного давления и расхода воздуха проектируемой вентиляционной установки:


Аэродинамическая характеристика вентилятора 1 и вентилятора 2.

На пересечении величин Р v =2200 Па и Q =6000 м³/час указываем рабочую точку. Наибольший коэффициент полезного действия определяется на характеристике вентилятора 2: кпд=0,54; частота вращения рабочего колеса n =2280 об/мин; окружная скорость края колеса u ~42 м/сек.

Окружная скорость рабочего колеса 1-го вентилятора ( u ~38 м/сек) значительно меньше, значит, будут меньше создаваемые этим вентилятором шум и вибрация, выше эксплуатационная надёжность установки. Иногда предпочтение отдаётся более тихоходному вентилятору. Но рабочий коэффициент полезного действия вентилятора должен быть не ниже 0,9 его максимального кпд. Сравним ещё две аэродинамические характеристики, которые подходят для выбора вентилятора к той же вентиляционной установке:


Аэродинамические характеристики вентилятора 3 и вентилятора 4.

Коэффициент полезного действия вентилятора 4 близок к максимальному (0,59). Частота вращения его рабочего колеса n =2250 об/мин. Кпд 3-его вентилятора несколько ниже (0,575), но и частота вращения рабочего колеса существенно меньше: n =1700 об/мин. При небольшой разнице коэффициентов полезного действия 3-й вентилятор предпочтительнее. Если расчёт мощности привода и электродвигателя покажет близкие результаты для обоих вентиляторов, следует выбрать вентилятор 3.

Расчёт мощности, требуемой для привода вентилятора.

Мощность, которая требуется для привода вентилятора, зависит от создаваемого им давления H в (Па), перемещаемого объёма воздуха Q в (м³/сек) и коэффициента полезного действия кпд:

N в= H в ·Q в/1000·кпд (кВт); Нв=2200 Па; Q в=6000/3600=1,67 м³/сек.

Коэффициенты полезного действия предварительно подобранных по аэродинамическим характеристикам вентиляторов 1, 2, 3 и 4 соответственно: 0,49; 0,54; 0,575; 0,59.

Подставляя величину давления, расхода и кпд в формулу расчёта, получим следующие значения мощности для привода каждого вентилятора: 7,48 кВт, 6,8 кВт, 6,37 кВт, 6,22 кВт.

Расчёт мощности электродвигателя для привода вентилятора.

Мощность электродвигателя зависит от вида её передачи с вала двигателя на вал вентилятора, и учитывается в расчёте соответствующим коэффициентом ( k пер). Нет потерь мощности при непосредственной посадке рабочего колеса вентилятора на вал электродвигателя, т. е. кпд такой передачи равен 1. Кпд соединения валов вентилятора и электродвигателя с помощью муфты 0,98. Для достижения необходимой частоты вращения рабочего колеса вентилятора применяем клиноремённую передачу, коэффициент полезного действия которой 0,95. Потери в подшипниках учитываются коэффициентом k п=0,98. По формуле расчёта мощности электродвигателя:

N эл= N в / k пер· k п

получим следующие мощности: 8,0 кВт; 7,3 кВт; 6,8 кВт; 6,7 кВт.

Установочную мощность электродвигателя принимают с коэффициентом запаса k з=1,15 для двигателей мощностью менее 5 кВт; для двигателей более 5 кВт k з=1,1:

С учётом коэффициента запаса k з=1,1 окончательная мощность электродвигателей для 1-го и 2-го вентиляторов составит 8,8 кВт и 8 кВт; для 3-го и 4-го 7,5 кВт и 7,4 кВт. Первые два вентилятора пришлось бы комплектовать двигателем 11 кВт, для любого вентилятора из второй пары достаточно мощности электродвигателя 7,5 кВт. Выбираем вентилятор 3: как менее энергоёмкий, чем типоразмеры 1 или 2; и как более тихоходный и эксплуатационнонадёжный по сравнению с вентилятором 4.

Номера вентиляторов и графики аэродинамических характеристик в примере подбора вентилятора приняты условно, и не относятся к какой-либо конкретной марке и типоразмеру. (А могли бы.)

Расчёт диаметров шкивов клиноремённого привода вентилятора.

Клиноремённая передача позволяет подобрать нужную частоту вращения рабочего колеса посредством установки на вал двигателя и приводной вал вентилятора шкивов разного диаметра. Определяется передаточное отношение частоты вращения вала электродвигателя к частоте вращения рабочего колеса вентилятора: n э / n в .

Шкивы клиноремённой передачи подбираются так, чтобы отношение диаметра приводного шкива вентилятора к диаметру шкива на валу электродвигателя соответствовало отношению частот вращения:

D в / D э = n э / n в

Отношение диаметра ведомого шкива к диаметру ведущего шкива называется передаточным числом ремённой передачи.

Пример. Подобрать шкивы для клиноремённой передачи вентилятора с частотой вращения рабочего колеса 1780 об/мин, с приводом от электродвигателя мощностью 7,5 кВт и частотой вращения 1440 об/мин. Передаточное отношение передачи:

n э / n в =1440/1780=0,8

Необходимую частоту вращения рабочего колеса обеспечит следующая комплектация: шкив на вентиляторе диаметром 180 мм , шкив на электродвигателе диаметром 224 мм .

Схемы клиноремённой передачи вентилятора, повышающей и понижающей частоту вращения рабочего колеса:

Воздушный, винт — это аэродинамический движитель, который, поглощая мощность установленного на аэросани двигателя внутреннего сгорания, и создает аэродинамическую силу — силу тяги.

Воздушный винт состоит из ступицы 2 (рис. 25), которой он с помощью промежуточной детали (втулки винца) закрепляется на валу, и двух, трех и более лопастей, создающих силу тяги.

Каждая лопасть воздушного винта представляет собой пластинку, выполненную в сечении в виде аэродинамического профиля, расположенного под углом атаки α по отношению к (плоскости вращения винта.



Рис. 25. Основные элементы воздушного винта: 1 — лопасть; 2 — ступица; 3— ребро атаки; 4 — сечение лопасти; 5 — задняя кромка; а — угол атаки

При вращении воздушного винта его лопасти за счет угла атаки а, так же как болт за счет наклона его резьбы (шага резьбы) ввертывается в гайку, ввинчиваются в воздух (рис. 26). Но так как плотность воздуха небольшая, лопасти винта проскальзывают в воздухе и отбрасывают, как вентилятор, какую-то массу воздуха назад. Эта масса воздуха является как бы подушкой, от которой винт отталкивается, создавая реактивную силу — силу тяги, за счет которой и движутся аэросани.



Рис. 26. Воздушный винт как бы ввинчивается в воздух

Очевидно, чем больше масса отбрасываемой винтом струи воздуха, тем больше будет и сила тяги, развиваемая воздушным винтом.

Чтобы увеличить массу воздуха, отбрасываемую винтом, можно или увеличить сечение струи (ометаемую площадь) путем использования винта большего диаметра, или ускорить движение струи, чего можно достигнуть увеличением числа оборотов винта и выбором формы лопасти винта.

Форма лопасти винта имеет исключительно большое значение для получения необходимой силы тяги. Самый мощный двигатель и хорошие формы корпуса и лыж не могут дать необходимого эффекта при плохо сконструированном или изготовленном воздушном винте.

В связи с этим желательно, чтобы установленный на аэросанях воздушный винт снимал с двигателя максимально возможную силу тяги, т. е. как принято определять в технике, имел бы высокий коэффициент полезного действия.


Коэффициент полезного действия винта равен отношению полезной мощности винта к потребляемой мощности:

где Т—сила тяги винта, кг;
υ —поступательная скорость винта, м/сек;
Nn — мощность, потребляемая винтом, л. с.


Из этого выражения силу тяги воздушного винта можно определить по формуле:

Из формулы видно, что сила тяги воздушного винта обратно пропорциональна скорости, т. е. снижается с увеличением скорости движения аэросаней.

Мощность, потребляемая винтом, определяется потерями, вызываемыми сопротивлением воздуха. Эти потери зависят от конструкции воздушного винта и режима его работы и, как правило, требуют проведения экспериментов в виде продувки винта в аэродинамической трубе и ряда испытаний, без результатов которых невозможно произвести точный расчет.

Так как проведение подобных испытаний под силу только крупным научно-исследовательским институтам, а аэродинамический расчет, с помощью которого можно было бы подобрать наивыгоднейший винт, чрезвычайно сложен, ниже приведены сведения, которые дадут общее представление о выборе отдельных важнейших параметров воздушного винта для аэросаней. Эти сведения не дают окончательных рекомендаций о подборе винта с наиболее возможным коэффициентом полезного действия, но вполне достаточны для практических целей по подбору винта к аэросаням.

Конечным результатом работы по подбору винта к аэросаням является получение силы тяги или тяги.

Но что же такое тяга и от чего она зависит?
Если в потоке воздуха, имеющего скорость υ разместить плоскую пластинку (рис. 27,а), имеющую площадь F, так, чтобы поверхность ее была перпендикулярна к потоку, то воздух, набегающий на нее, тормозится и старается обойти ее, за счет чего за пластинкой образуется зона разрежения с сильными завихрениями воздуха.



Рис. 27. Возникновение силы лобового сопротивления и подъемной силы при обтекании прямой пластинки воздухом: а — лобовое сопротивление; б — возникновение подъемной силы

Давление воздуха на пластинку R1 с одной ее стороны и подсос за счет разрежения R2 с другой стороны составят равнодействующую силу сопротивления воздуха R, или силу лобового сопротивления Q.

По закону Бернулли, изменение скорости связано с изменением давления, которое, будучи выражено во времени (за 1 секунду) секундным объемом воздуха W, и будет определять силу R = Q.

Опытами было установлено, что, ударяясь о пластинку, частицы воздуха не полностью теряют скорость, поэтому в формулу, определяющую силу сопротивления, вводится коэффициент α, показывающий, какая часть полной скорости υ потеряна струей воздуха при обтекании пластинки.

Таким образом, сила R будет равна:
R—αpFυ 2 , где р — плотность воздуха у земли;
F — площадь профиля.


Так как степень торможения потока воздуха зависит от формы тела, которое он обтекает, и замерить ее практически очень трудно, сначала в аэродинамической лаборатории получают опытные величины сопротивления тела к, а потом уже определяют коэффициент а из выражения:

В рассмотренном случае обтекания пластинки не учитывалось трение воздуха о поверхность обтекаемого тела, которое имеет место при обтекании шара, куба и т. п. тел и которое учитывается также коэффициентом α.

Пластинка, шар и куб имеют симметричную форму. У этих плохо обтекаемых тел большую часть сопротивления составляет лобовое сопротивление. При рассмотрении тел несимметричных или симметричных, но расположенных под некоторым углом к набегающему на них потоку воздуха, характер обтекания и возникающие при этом силы изменяются.

Если прямую пластинку (рис. 27,6) установить под некоторым углом а к направлению потока воздуха, то последний будет неравномерно обтекать эту пластинку. Причем на нижней поверхности ее возникает (за счет положительного угла наклона пластинки и набегающего на нее потока) повышенное давление Pi воздуха, а на верхней за счет отрицательного угла воздух отрывается от поверхности, появляются завихрения, давление понижается и создает подсос P2 воздуха.

Силы P1 и P2 будут направлены в одну сторону и в сумме составят силу Р. Сила Р, разложенная по правилу параллелограмма на составляющие, образует две силы—подъемную силу Т1 и силу сопротивления R.

Величина сил, действующих на прямую пластинку, зависит от угла а, наклона пластинки и скорости набегающего на нее потока воздуха, причем сила R уменьшится с уменьшением угла наклона пластинки. Подъемная сила Т1 имеет максимальную величину при каком-то определенном значении угла α наклона пластинки по отношению к потоку воздуха, обтекающего пластинку со скоростью υ, и уменьшается при изменении наклона пластинки в ту или иную сторону.

Лопасти воздушного винта, так же как и рассмотренная пластинка, расположены под углом к плоскости вращения, Следовательно, на каждом небольшом: отрезке лопасти возникают силы: подъемная сила Т1, которая в данном случае будет силой тяти, и сила сопротивления воздуха R.

Мощность установленного на аэросанях двигателя и должна затрачиваться на создание силы тяги Т1 и преодоление силы R сопротивления воздуха вращению винта.

Желательно, чтобы сила тяги Т1 была как можно больше, а сила сопротивления воздуха R — как можно меньше.

Практика показала, что, используя для воздушного винта металлическую пластинку постоянной толщины, Можно достичь неплохих результатов. Но аэродинамические исследования доказали, что применение аэродинамических профилей (дужек), выбираемых в зависимости От условий работы винта, задаваемых конструктором, позволяет при прочих равных условиях, т. е. при одних и тех же углах атаки а, установки профиля и скорости потока воздуха v, получить значительно большую силу тяги Т1 и меньшую силу сопротивления воздуха R.

Выгодное изменение величины сил Т1 и R по сравнению с силами для прямой пластинки происходит из-за того, что воздух обтекает профилированную дужку более плавно, не образуя сильных завихрений на ее верхней части, что снижает сопротивление воздуха. Одновременно за счет) удлинения пути воздуха, обтекающего выпуклую профилированную дужку сверху, по сравнению с длиной пути воздуха, обтекающего дужку снизу, резко увеличивается скорость воздуха на верхней поверхности, что способствует значительному росту силы P2 (рис.28), входящей составной частью в силу тяги.



Рис. 28. Возникновение подъемной силы на профилированной аэродинамической дужке

Полное сопротивление дужки можно выразить через известную уже нам формулу:

где С — коэффициент сопротивления;
ρ —плотность воздуха;
F — площадь профиля, м 2 ;
υ — скорость потока, м/сек.


Составляющие силы R и Т полного сопротивления (рис. 28) представляют собой проекции равнодействующей Р (при разложении ее по правилу параллелограмма) на различные направления. Эти составляющие силы могут быть выражены в виде:

где сх — коэффициент лобового сопротивления;
су — коэффициент подъемной силы данного профиля дужки;
ρυ2 —величина скоростного напора.

В этих формулах сх и су — безразмерные величины, а силы R и Т выражены в кг. Эти аэродинамические силы прямо пропорциональны значениям их коэффициентов и квадрату скорости.

Значения аэродинамических коэффициентов определяются экспериментом, причем величина коэффициента сопротивления сх, зависит от формы тела и состояния его поверхности. Величина сх может колебаться в очень больших пределах. Так, для плоской пластинки, установленной поперек воздушного потока, сх = 1,28, а для хорошо обтекаемого тела сх = 0,025.

Значение сх для аэродинамических профилей гораздо меньше, чем для тел самой лучшей обтекаемой формы. Это относится только к телам, которые создают подъемную силу*.

При выборе профиля для лопасти воздушного винта необходимо стремиться подобрать в зависимости от углов атаки такой профиль, который имел бы наименьший коэффициент сх и наибольший коэффициент су.

Величины коэффициентов сх и су для каждого профиля, подвергнутого продувке в лаборатории, изображаются графиком, называемым полярой Лилиенталя. График дает значения коэффициентов сх и су при различных углах атаки а.

На рис. 29 изображены такие кривые для профилей NACA-2309 и CLARY-УН, а в приложении 3 даны их геометрические характеристики. Из приведенных характеристик видно, что два мало отличающихся по форме профиля дают совершенно различные коэффициенты cy и сх.



Рис. 29. Поляры Лилиенталя для аэродинамических профилей: 1 —NACA-2309; 2 —CLARY-УН Цифры у точек кривых указывают значения угла α


После того как сеть воздуховодов спроектирована и просчитана, наступает время подобрать под эту систему вентиляционную установку для подачи и обработки воздуха. Сердцем вентиляционной системы является вентилятор, приводящий в движение воздушные массы и призванный обеспечить необходимый расход и давление в сети. В этом качестве часто выступает агрегат осевого типа. Чтобы необходимые параметры были выдержаны, вначале следует произвести расчет осевого вентилятора.

Осевой вентилятор

Осевой вентилятор используется в системах воздуховодов для перемещения больших масс воздуха.

Общее понятие о конструкции агрегата и его назначении

Осевой вентилятор – это лопастная воздуходувная машина, которая передает механическую энергию вращения лопастей рабочего колеса воздушному потоку в виде потенциальной и кинетической энергии, а он затрачивает эту энергию на преодоление всех сопротивлений в системе. Осью рабочего колеса данного типа является ось электродвигателя, она располагается по центру воздушного потока, а плоскость вращения лопастей перпендикулярна ему. Агрегат перемещает воздух вдоль своей оси за счет лопаток, повернутых под углом к плоскости вращения. Крыльчатка и электродвигатель закреплены на одном валу и постоянно находятся внутри воздушного потока. Такая конструкция имеет свои недостатки:

Место установки вентилятора

Место установки вентилятора.

  1. Агрегат не может перемещать воздушные массы с высокой температурой, которые могут повредить электродвигатель. Рекомендуемая максимальная температура – 100° C.
  2. По той же причине не допускается применять этот тип агрегатов для перемещения агрессивных сред или газов. Перемещаемый воздух не должен содержать липких включений или длинных волокон.
  3. В силу своей конструкции осевой вентилятор не может развивать высокое давление, поэтому непригоден к использованию для вентиляционных систем большой сложности и протяженности. Максимальное давление, которое может обеспечить современный агрегат осевого типа, находится в пределах 1000 Па. Однако, существуют специальные шахтные вентиляторы, конструкция привода которых позволяет развивать давление до 2000 Па, но тогда уменьшается максимальная производительность – до 18000 м³/ч.

Достоинства этих машин следующие:

Устройство осевого вентилятора

Устройство осевого вентилятора.

  • вентилятор может обеспечить большой расход воздуха (до 65000 м³/ч);
  • электродвигатель, находясь в потоке, успешно охлаждается;
  • машина не занимает много места, имеет небольшой вес и может быть установлена прямо в канале, что снижает затраты при монтаже.

Все вентиляторы классифицируются по типоразмерам, указывающим на диаметр рабочего колеса машины. Данную классификацию можно увидеть в Таблице 1.

Типоразмер 3 4 5 6 8 10 12 12,5 16 20 25 30 40
Диаметр рабочегоколеса, мм 320 400 500 630 800 1000 1200 1250 1600 2000 2500 3200 4000

Описание вычислений параметров воздуходувной машины

Расчет вентиляционного агрегата любого типа выполняется по индивидуальным аэродинамическим характеристикам, не является исключением и осевой вентилятор. Вот эти характеристики:

Установка осевого вентилятора

Установка осевого вентилятора.

  1. Объемный расход или производительность.
  2. Коэффициент полезного действия.
  3. Мощность, необходимая для привода агрегата.
  4. Действительное давление, развиваемое агрегатом.

Производительность была определена ранее, когда выполнялся расчет самой вентиляционной системы. Вентилятор должен ее обеспечить, поэтому значение расхода воздуха остается неизменным для расчета. Если же температура воздушной среды в рабочей зоне отличается от температуры воздуха, проходящего через вентилятор, то производительность следует пересчитать по формуле:

L = Ln x (273 + t) / (273 + tr), где:

  • Ln – необходимая производительность, м³/ч;
  • t – температура воздуха, проходящего через вентилятор, °C;
  • tr – температура воздуха в рабочей зоне помещения, °C.

Определение мощности

После того как необходимое количество воздуха окончательно определено, нужно выяснить мощность, необходимую для создания расчетного давления при этом расходе. Расчет мощности на валу рабочего колеса производится по формуле:

NB (кВт) = (L x p) / 3600 x 102ɳв x ɳп, здесь:

Технические характеристики осевых вентиляторов

Технические характеристики осевых вентиляторов.

  • L – производительность агрегата в м³ за 1 секунду;
  • p – необходимый напор вентилятора, Па;
  • ɳв – значение КПД, определяется по аэродинамической характеристике;
  • ɳп – значение КПД подшипников агрегата, принимается 0,95-0,98.

Значение установочной мощности электродвигателя отличается от мощности на валу, последняя учитывает только нагрузку в рабочем режиме. При пуске любого электродвигателя происходит скачок силы тока, следовательно, и мощности. Этот пусковой пик должен быть учтен при расчете, поэтому установочная мощность электродвигателя будет:

Ny = K NB, где K – коэффициент запаса на пусковой момент.

Значения коэффициентов запаса при различной мощности на валу отражены в Таблице 2.

Мощность на валу, кВт До 0,5 0,51 – 1,0 1,01 – 2,0 2,01 – 5,0 Свыше 5,0
Коэффициент запаса для осевых вентиляторов 1,2 1,15 1,1 1,05 1,05

Если агрегат устанавливается в помещении, в котором температура воздуха может достигать по разным причинам +40° C, то параметр Ny следует увеличить на 10%, а при +50° C установочная мощность должна быть выше расчетной на 25%. Окончательно этот параметр электродвигателя принимают по каталогу завода-производителя, выбрав ближайшее большее значение к расчетному Ny с просчетом всех запасов. Как правило, воздуходувную машину устанавливают до теплообменника, который нагревает воздух для дальнейшей его подачи в помещения. Тогда электродвигатель будет запускаться и работать на холодном воздухе, что есть более экономично в плане расхода электроэнергии.

Воздуходувные машины разных типоразмеров могут быть укомплектованы электродвигателями различной мощности в зависимости от напора, который требуется получить. Каждая модель агрегата имеет свою аэродинамическую характеристику, которую завод-производитель отражает в своем каталоге в графическом виде. Коэффициент полезного действия – величина переменная для различных условий работы, окончательно ее можно будет выяснить по графической характеристике вентилятора, опираясь на величины производительности, расхода и установочной мощности, вычисленные ранее.

Основная задача расчета и подбора вентилятора – выполнить требования по перемещению необходимого количества воздуха с учетом сопротивления сети воздуховодов, при этом добиться максимального значения КПД агрегата.

Если рабочая точка, определенная на графической характеристике по значениям давления и производительности, указывает на низкий КПД, следует взять вентилятор другого типоразмера.

Еще один параметр, характеризующий воздуходувные машины, называют удельной быстроходностью. Ее величина показывает, какая должна быть скорость вращения рабочего колеса вентилятора при нормальных условиях работы, чтобы переместить 1 м³ воздуха за 1 секунду, при этом развивается напор 10 Па и максимальное значение КПД. Расчет данного параметра выполняется по формуле:

nуд = 5,3 (Q0,5 / p0,75) n.

  • nуд – величина удельной быстроходности, об/мин;
  • Q – объемный расход воздуха, м³ за секунду, Q = L / 3600;
  • p – необходимое давление, полученное в результате расчета, Па;
  • n – скорость вращения рабочего колеса согласно каталогу производителя, об/мин.

Практические расчеты по данной формуле показывают, что осевые вентиляторы большой производительности и малого напора отличаются большей быстроходностью, и наоборот. Например, агрегаты с низким давлением имеют показатель быстроходности более 200 об/мин, а с высоким – от 50 до 100 об/мин.

Если комфорту в доме вы уделяете достаточно внимания, то наверное, согласитесь, что качество воздуха должно стоять на одном из первых мест. Свежий воздух полезен для здоровья и мышления. В хорошо пахнущую комнату не стыдно пригласить гостей. Проветривать каждое помещение по десять раз в день — нелегкое занятие, неправда ли?

Многое зависит от выбора вентилятора и в первую очередь его давления. Но до того как определить давление вентилятора, нужно ознакомиться с некоторыми физическими параметрами. Прочитайте о них в нашей статье.

Благодаря нашему материалу вы изучите формулы, узнаете виды давления в вентиляционной системе. Мы привели для вас сведения о полном напоре вентилятора и двух способах, по которым его можно измерить. В итоге вы сможете самостоятельно измерить все параметры.

Давление в вентиляционной системе

Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.

Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.

Аэродинамика вентилятора на графике

К первой относят приборы с напором

Аэродинамическая характеристика осевых вентиляторов на графике: Pv — полное давление, N — мощность, Q — расход воздуха, ƞ — КПД, u — скорость, n — частота вращения

Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.

В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.

Формулы для расчета напора вентилятора

Напор представляет собой соотношение воздействующих сил и площади, на которую они направлены. В случае с вентканалом речь идет о воздухе и сечении.

Поток в канале распределяется неравномерно и не проходит под прямым углом к поперечному разрезу. Узнать точный напор по одному замеру не удастся, придется искать среднее значение по нескольким точкам. Сделать это нужно и для входа, и для выхода из вентилирующего прибора.

Осевой вентилятор

Осевые вентиляторы используют отдельно и в воздуховодах, они эффективно работают там, где нужно переносить большие массы воздуха при относительно низком давлении

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) — Pп (вх.), где:

  • Pп (вых.) — полное давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Для статического давления вентилятора формула отличается незначительно.

Ее записывают как Рст = Рст (вых.) — Pп (вх.), где:

  • Рст (вых.) — статическое давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора: как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 — Рст 1. Это второстепенный параметр.

График статического давления и расхода

Проектировщики подают параметры с учетом небольшого засорения или без такового: на изображении показано несоответствие статического давления одного и того же вентилятора в разных вентиляционных сетях

Правильный выбор вентилирующего устройства включает такие нюансы:

  • подсчет расхода воздуха в системе (м³/с);
  • подбор устройства на основе такого расчета;
  • определение скорости на выходе по выбранному вентилятору (м/с);
  • расчет Pп устройства;
  • измерение статического и динамического напора для сравнения с полным.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П. F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Как вычислить давление в вентиляции?

Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.

На практике вышеописанные условия встречаются редко, и тогда перед нужным местом устанавливают хонейкомб, который выпрямляет поток воздуха.

Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди — минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.

Трубка полного давления

Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин

Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.

Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.

Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.

Измерение с трубкой Прандтля

Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с

Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.

Напор тогда измеряют по следующему методу:

  1. За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
  2. Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.

От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.

Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.

Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.

Напоромер для воздушной среды

Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0

В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции.

Особенности расчета напора

Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.

Следует помнить такие закономерности:

  • полное давление — это сумма статического и динамического;
  • полный напор вентилятора должен равняться потерям давления в вентиляционной сети.

Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.

Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.

Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.

Термоанемометр для вентиляционной системы

Анемометры и термоанемометры измеряют скорость потока в воздуховоде при значениях до 5 м/с или больше, анемометр следует выбирать по ГОСТ 6376—74

При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.

С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.

Некоторые требования к электродвижку:

  • малый пусковой момент — по причине того, что расход мощности меняется в соответствии с изменением количества оборотов, подведенного к кубу;
  • большой запас;
  • работа на максимальной мощности для большей экономии.

Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.

На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.

Выводы и полезное видео по теме

Обзор физических показателей, которые нужны для измерений:

Роль давления в вентиляционной сети:

Вентилятор — простая конструкция в виде колеса с лопастями. Одновременно это главная часть вентиляционной системы. Механический прибор влияет на напор в воздуховоде и определяет эффективность вентиляции.

Если хотите рассчитать давление вентилятора, разберитесь с такими величинами, как скорость, расход воздуха, мощность. Вы будете лучше понимать суть измерений. Главный показатель, полный напор измеряйте по описанных нами схемах.

Если у вас есть вопросы — задавайте их в форме под статьей. Пишите комментарии и обменивайтесь ценными знаниями с другими читателями. Возможно, у вас есть опыт в проектировании систем вентилирования — он будет полезен в чьей-то конкретной ситуации.

Читайте также: