Замена нерегулируемого привода насосов и вентиляторов на частотно регулируемый позволяет

Обновлено: 13.05.2024

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) — система управления скоростью вращения асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Частотный преобразователь (преобразователь частоты) — это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или дроссель, а для уменьшения электромагнитных помех - EMC-фильтр.

Содержание

Применение

ЧРП применяются в конвейерных системах, резательных автоматах, управлении приводами мешалок, насосов, вентиляторов, компрессоров и т.п. ЧРП нашёл место в бытовых кондиционерах. Всё большую популярность ЧРП приобретает в городском электротранспорте, особенно в троллейбусах. Применение позволяет:

  • повысить точность регулирования
  • снизить расход электроэнергии в случае переменной нагрузки.

Применение преобразователей частоты на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов, по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, в большую сторону) и постоянно функционируют в заданном режиме с постоянной частотой вращения, не учитывая при этом колебания расходов и напоров, вызванных переменным водопотреблением. Т.е. простыми словами, даже когда не требуется значительных усилий, насосы продолжают работу в заданном рабочем темпе, при этом расходуя значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает.

Рождение регулируемого электропривода позволило пойти от обратного в технологии системы подачи: теперь не насосная установка диктует условия, а непосредственно сами характеристики трубопроводов. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного применения. Частотное регулирование скорости вращения вала асинхронного двигателя, осуществляется с помощью электронного устройства, которое принято называть частотный преобразователь. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. При такой частоте сети скорость вращения двигателя составляет 3000 (50 Гц х 60 сек) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (т.к. это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя, понизить частоту подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, а, следовательно, измениться напор и производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя при помощи специального датчика давления, установленного в трубопроводе, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,4 до 500 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

- экономить электроэнергию, настроив работу электропривода в зависимости от реального водопотребления (эффект экономии 20-50%);

- снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5%);

- уменьшить расходы на профилактический и капитальный ремонт сооружений и оборудования (всей инфраструктуры подачи воды), в результате пресечения аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);

- достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;

- увеличить напор выше обычного в случае необходимости;

Потери энергии при торможении двигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются подъёмники, лифты, центрифуги, намоточные машины и т.п.

Однако, в настоящий момент уже существуют преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. Интересно также, что для некоторого ряда мощностей стоимость установки преобразователя частоты с тормозными резисторами часто сопоставима со стоимостью установки преобразователя частоты со встроенным рекуператором, даже без учёта сэкономленной электроэнергии.

В этом случае, установка начинает "приносить деньги" фактически сразу после ввода в эксплуатацию.

Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).

Водяной насос управляемый преобразователем частоты

Насос водяной

Канальный вентилятор управляемый преобразователем частоты

Канальный вентилятор

Рассмотрим процессы, происходящие в электродвигателе в момент прямого пуска с помощью автоматического выключателя или кнопки включения контактора на примере обычного трехфазного асинхронного двигателя.

На статорные обмотки электродвигателя подается переменное напряжение, которое генерирует соответствующее электромагнитное поле этих обмоток. Это поле, направленное в сторону ротора, в свою очередь заставляет генерироваться электрический ток в короткозамкнутых витках ротора. Затем ток в обмотках ротора генерирует ответное магнитное поле, которое и приводит к движению ротора относительно статора. Все эти процессы, возникающие в момент пуска, называются процессом намагничивания статора и ротора.

Управление асинхронным электрическим двигателем с помощью преобразователя частоты

Асинхронный электрический двигатель

Трехфазный электродвигатель сам по себе не нужен: на его валу обязательно присутствует нагрузка (самая простая — в виде лопастей вентилятора). В ситуации с нагруженным конвейером всё сложнее. Тем не менее, у этой нагрузки есть момент инерции – момент, который необходимо преодолеть двигателю для запуска вращения вала. Таким образом, все эти электромагнитные и механические силы в момент пуска напрямую соотносятся с обычным пусковым током двигателя. Как несложно догадаться, этот ток будет в несколько раз (2-7) больше номинального тока двигателя, который получится в установившемся режиме работы.

Скорость вращения электродвигателя или число оборотов в минуту

n = (60 • f / p) • (1 — s)

где n – номинальное число оборотов вала асинхронного электродвигателя, p – число пар полюсов (см. на паспортной табличке), s – скольжение (разность скоростей поля ротора и поля статора), f – частота переменного тока (например, 50 Гц). Число пар полюсов статора зависит от конструкции катушек статора. Скольжение зависит от нагрузки на валу электродвигателя. Таким образом, подключив электродвигатель к сети переменного тока, мы получим вращение с постоянной скоростью.

Зачем нужно регулировать скорость и как это делается?

Заданное в паспортной табличке число оборотов двигателя на 1 минуту не всегда устраивает потребителя. Иногда скорость механизма хочется уменьшить, а давление в трубе наоборот поднять. Возникает потребность в изменении частоты вращения вала электродвигателя. Как видно из формулы выше, наиболее простой способ изменения частоты вращения вала электродвигателя –изменить частоту переменного тока f.

Шильдик электродвигателя Toshiba

Шильдик электродвигателя EQPIII Toshiba

Принцип работы частотного преобразователя

Вот тут и приходит на помощь частотный преобразователь, иначе говоря ЧРП (частотно-регулируемый привод). Он, как говорилось в самом начале, позволяет задавать на своем выходе заданные в настройках амплитуду напряжения и частоту переменного тока.

Частота вы выходе может регулироваться в диапазоне 0.01 — 590 Гц если брать инверторы серии AS3 Toshiba. Для серии S15 Toshiba диапазон регулирования находится в пределах 0.01 — 500 Гц. Для серии nC3E Toshiba диапазон регулирования находится в пределах 0.01 — 400 Гц. Это объясняется функциональным назначением разных серий ПЧ.

Напряжение на выходе может изменяться в диапазоне от 0 В до напряжения питания ПЧ, т.е. текущего напряжения на входе частотного преобразователя. Это свойство можно использовать для получения нужного выходного напряжения и частоты, что ценно, например, для испытания стендового оборудования. Правда для этого придется использовать специальный выходной синусный фильтр, чтобы получить чистые синусоидальное напряжение и ток.

С частотой все понятно, но зачем нужно изменять напряжение?

Дело в том, что для поддержания определенного магнитного поля в обмотках статора требуется изменять не только частоту, но и напряжение. Получается, что частота должна соответствовать определенному напряжению. Этот называется законом скалярного управления U/f (V/f), где U или V — напряжение.

Использование частотника позволяет убрать большой пусковой ток, достигая таким образом значительного экономического эффекта при частых пусках и остановках электродвигателя.

Схема частотного преобразователя

Схема инвертора преобразователя частоты

Схема преобразователя частоты

Напряжение в звене постоянного тока после выпрямления трехфазного напряжения будет равно согласно формуле: 380*1,35 = 513 В.

Дроссель DCL в звене постоянного тока позволяет дополнительно сгладить пульсации напряжения после диодного моста и выполняет функции снижения гармоник выпрямителя, инжектируемых в питающую сеть.

ШИМ инвертора преобразователя частоты

ШИМ инвертора

Выходное напряжение частотного преобразователя будет всегда ниже входного сетевого напряжения. Это связано с потерями в силовом модуле и алгоритме получения ШИМ импульсов.

Между частотным преобразователем и электродвигателем можно установить дополнительный фильтр, позволяющий значительно улучшить форму выходного напряжения после частотника. Это необходимо для того, чтобы импульсы ШИМ не разрушали изоляцию обмоток двигателя и не вызывали перенапряжения на конце длинного кабеля. Подробнее о выходных фильтрах.

Выбор частотного преобразователя

При проектировании частотно-регулируемого электропривода необходимо учесть множество нюансов. При выборе частотника руководствуются следующими критериями:


Выбор частотного регулятора для промышленного оборудования делается на основании расчетов по специализированным методикам. Малейшие ошибки могут привести к авариям, которые могут иметь непредсказуемые последствия. Проектирование электропривода и выбор ПЧ целесообразно доверить специалистам по автоматизации. Правильный выбор частотника обеспечивает экономию электроэнергии до 40-50%, снижение затрат на ремонт и обслуживание электропривода и дает неплохой экономический эффект.

Технические особенности применения частотного электропривода

  1. Для обеспечения высокой производительности можно свободно переключаться на любой режим в настройках.
  2. Практически все устройства обладают диагностическими функциями, что позволяет быстро устранить возникшую неполадку. Однако рекомендуется в первую очередь проверить настройки, исключить вероятность непроизвольных действий работников.
  3. Регулируемыйприводможетсинхронизировать конвейерные процессы, либо задавать определённое соотношение взаимозависимых величин. Сокращение оборудования ведёт к оптимизации технологии.
  4. В состоянии автонастройки параметры двигателя автоматически заносятся в память преобразователя частоты. Благодаря чему повышается точность вычисления момента, и улучшается компенсация скольжения.

Область применения

Производителями предлагается широкий ассортимент приводов, используемых в областях, где задействованы электродвигатели. Идеальное решение для всех видов нагрузки, в том числе насосов и вентиляторов. Системы среднего класса используются на угольных электростанциях, в горнодобывающей промышленности, на мельницах, в жилищно-коммунальном хозяйстве и т. д. Диапазон номиналов выглядит таким образом: 3 кВ, 3.3 кВ, 4.16 кВ, 6 кВ, 6.6 кВ, 10 кВ и 11 кВ.

С появлением регулируемого электропривода контроль давления воды у конечного потребителя не вызывает проблем. Интерфейс с продуманной структурой сценариев отлично подходит для управления насосным оборудованием. Благодаря компактной конструкции, привод может быть установлен в шкаф различного исполнения. Продукты нового поколения обладают свойствами передовой техники:

  • высокая скорость и точность управления в векторном режиме;
  • существенная экономия электроэнергии;
  • быстрые динамические характеристики;
  • большой низкочастотный вращающий момент;
  • двойное торможение и т. д.

Назначение и технические показатели

Комплектные ЧРП напряжением до и выше 1 кВ (предназначенные для приема и преобразования энергии, защиты электрооборудования от токов КЗ, перегрузки) позволяют:

  • плавно запускать двигатель, а, следовательно, уменьшать его износ;
  • останавливать, поддерживать частоту вращения вала двигателя.

Комплектные ЧРП шкафного исполнения до 1кВ выполняют те же задачи по отношению к двигателям с мощностью 0,55 – 800 кВт. Привод нормально работает, когда напряжение в электросети находится в пределах от -15% до +10%. При безостановочной работе снижение мощности наступает, если напряжение составляет 85%-65%. Общий коэффициент мощности cosj = 0,99. Выходное напряжение автоматически регулируется посредством автоматического включение резерва (АВР).

Преимущества использования

С точки зрения оптимизации и потенциальные преимущества предоставляют возможность:

  • регулировать процесс с высокой точностью;
  • удалённо диагностировать привод;
  • учитывать моточасы;
  • следить за неисправностью и старением механизмов;
  • повышать ресурс машин;
  • значительно снижать акустический шум электродвигателя.

Комплектация регулируемого привода

Частотный преобразователь формируется из трёх компонентов:

  1. Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
  2. Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
  3. Инвертор, моделирующий напряжение нужной частоты.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Существует две схемы соединения электродвигателя с частотным преобразователем:

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

chastonik

На рисунке схема подключения частотника 8400 Vector

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

chastonik

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Классификация частотников

По величине и типу электропитания различают инверторы нескольких видов:

  • однофазные;
  • трёхфазные;
  • высоковольтные агрегаты.

Полупроводниковые частотные преобразователи производят преобразование тока или напряжения промышленной сети. Выходные параметры необходимого сигнала свободно регулируются элементами управления.

Для чего может быть нужен электродвигателю частотный преобразователь

Применение частотных преобразователей позволяет снизить затраты на электроэнергию, расходы на амортизацию двигателей и оборудования. Их возможно использовать для дешевых двигателей с короткозамкнутым ротором, что снижает издержки производства.

Многие электродвигатели работают в условиях частой смены режимов работы (частые пуски и остановки, изменяющуюся нагрузку). Частотные преобразователи позволяют плавно запускать электродвигатель и снижают максимальный пусковой момент и нагрев оборудования. Это важно, например, в грузоподъемных машинах и позволяет снизить негативное влияние резких пусков, а также исключить раскачивание груза и рывки при остановке.

При помощи ПЧ можно плавно регулировать работу нагнетательных вентиляторов, насосов и позволяет автоматизировать технологические процессы (применяются в котельных, на горнодобывающих производствах, в нефтедобывающей и нефтеперерабатывающей сферах, на водопроводных станциях и других предприятиях).

Использование частотных преобразователей в транспортерах, конвейерах, лифтах позволяет увеличить срок службы их узлов, так как снижает рывки, удары и другие негативные факторы при пусках и остановке оборудования. Они могут плавно увеличивать и уменьшать частоту вращения двигателя, осуществлять реверсивное движение, что важно для большого количества высокоточного промышленного оборудования.

Частотный привод

Регулируемый электропривод предназначен для управления двигателем путем контроля параметров. Скорость прямо пропорциональна частоте. Поэтому, варьируя частотой, можно поддерживать скорость вращения вала мотора, заданную согласно технологии. Пошаговое описание рабочего процесса для частотно-регулируемого привода (ЧРП) выглядит примерно так.

  1. Шаг первый. Преобразование диодным силовым выпрямителем одно- или трехфазного входного тока в постоянный.
  2. Шаг второй. Контроль преобразователем частоты за крутящим моментом и скоростью вращения вала электродвигателя.
  3. Шаг третий. Управление выходным напряжением, поддерживание постоянного соотношения U/f.

Устройство, выполняющее на выходе системы обратную функцию генерации постоянного тока в переменный, именуется инвертором. Избавление от пульсаций на шине достигается путем добавления дросселя и конденсатора фильтра.

Как выбрать частотно-регулируемый электропривод

Преобладающее число частотных преобразователей изготавливаются со встроенным фильтром электромагнитной совместимости (ЭМС).

Частотный привод

Различаются такие виды управления, как скалярное, бездатчиковое и датчиковое векторное, и др. Согласно заданным приоритетам в принятии управленческих решений, приводы выбираются по:

  • типу нагрузки;
  • напряжению и номиналу двигателя; ;
  • режиму управления; регулировки;
  • ЭМС и т. д.

Если ЧРП предназначен для асинхронного двигателя с большим сроком эксплуатации, то рекомендуется выбирать частотный преобразователь с завышенным током на выходе.С помощью современных преобразователей частоты возможно управление с пульта, по интерфейсу или комбинированным методом.

Технические особенности применения частотного электропривода

  1. Для обеспечения высокой производительности можно свободно переключаться на любой режим в настройках.
  2. Практически все устройства обладают диагностическими функциями, что позволяет быстро устранить возникшую неполадку. Однако рекомендуется в первую очередь проверить настройки, исключить вероятность непроизвольных действий работников.
  3. Регулируемыйприводможетсинхронизировать конвейерные процессы, либо задавать определённое соотношение взаимозависимых величин. Сокращение оборудования ведёт к оптимизации технологии.
  4. В состоянии автонастройки параметры двигателя автоматически заносятся в память преобразователя частоты. Благодаря чему повышается точность вычисления момента, и улучшается компенсация скольжения.

Область применения

Производителями предлагается широкий ассортимент приводов, используемых в областях, где задействованы электродвигатели. Идеальное решение для всех видов нагрузки, в том числе насосов и вентиляторов. Системы среднего класса используются на угольных электростанциях, в горнодобывающей промышленности, на мельницах, в жилищно-коммунальном хозяйстве и т. д. Диапазон номиналов выглядит таким образом: 3 кВ, 3.3 кВ, 4.16 кВ, 6 кВ, 6.6 кВ, 10 кВ и 11 кВ.

С появлением регулируемого электропривода контроль давления воды у конечного потребителя не вызывает проблем. Интерфейс с продуманной структурой сценариев отлично подходит для управления насосным оборудованием. Благодаря компактной конструкции, привод может быть установлен в шкаф различного исполнения. Продукты нового поколения обладают свойствами передовой техники:

  • высокая скорость и точность управления в векторном режиме;
  • существенная экономия электроэнергии;
  • быстрые динамические характеристики;
  • большой низкочастотный вращающий момент;
  • двойное торможение и т. д.

Назначение и технические показатели

Комплектные ЧРП напряжением до и выше 1 кВ (предназначенные для приема и преобразования энергии, защиты электрооборудования от токов КЗ, перегрузки) позволяют:

  • плавно запускать двигатель, а, следовательно, уменьшать его износ;
  • останавливать, поддерживать частоту вращения вала двигателя.

Комплектные ЧРП шкафного исполнения до 1кВ выполняют те же задачи по отношению к двигателям с мощностью 0,55 – 800 кВт. Привод нормально работает, когда напряжение в электросети находится в пределах от -15% до +10%. При безостановочной работе снижение мощности наступает, если напряжение составляет 85%-65%. Общий коэффициент мощности cosj = 0,99. Выходное напряжение автоматически регулируется посредством автоматического включение резерва (АВР).

Преимущества использования

С точки зрения оптимизации и потенциальные преимущества предоставляют возможность:

  • регулировать процесс с высокой точностью;
  • удалённо диагностировать привод;
  • учитывать моточасы;
  • следить за неисправностью и старением механизмов;
  • повышать ресурс машин;
  • значительно снижать акустический шум электродвигателя.

Заключение

Что такое ЧРП? Это мотор-контроллер, который управляет электродвигателем за счет регулировки частоты входной сети, и одновременно защищает агрегат от различных неисправностей (токовой перегрузки, токов КЗ).

Электрические приводы (выполняющие три функции, связанные со скоростью, управлением и торможением) являются незаменимым устройством для работы электродвигателей и других вращающихся машин. Системы активно применяются во многих сферах производства: в нефтегазовой отрасли, атомной энергетике, деревообработке и др.

Знание принципов работы частотно регулируемого привода (ЧРП) может упростить процесс выбора преобразователя частоты.

Автор: Пол Эйвери, Yaskawa America Inc.

Независимо от того, насколько давно и каким образом, уже обыденные частотные преобразователи пришли в Вашу жизнь, где-то есть тот, кто впервые стукнулся с ЧРП или только рассматривает возможность их применения. Вспомните, когда вы впервые задумались о применении одного из современных частотных преобразователей с широтно-импульсной модуляцией для двигателя переменного тока. Скорее всего, у вас, на тот момент, было не совсем верное представление об их возможностях и назначении. В этой статье мы рассмотрим и постараемся развеять пять распространенных мифов о частотно регулируемом приводе.


Рис. 1. Частотный преобразователь

Миф № 1: Выходной сигнал частотного преобразователя является синусоидальным

Людям, так или иначе связанные с эксплуатацией электродвигателей в, как правило, знакома работа асинхронных двигателей переменного тока с использованием пускателей. При пуске электродвигателя, пускатель замыкает контакты обмоток электродвигателя с фазами фазной питающей сети. Напряжение каждой фаза представляет собой синусоидальную волну. Приложенное напряжение создает на клеммах электродвигателя тоже синусоидальной формы с той же частотой (можно убедится проверкой напряжения на клеммах электродвигателя). Пока вроде всё просто и понятно.


Рис. 2. Схема инвертора с IGBT транзисторами.

Результирующий сигнал напряжения, прикладываемый к обмотке двигателя, не является синусоидальным (см. Рис. 3). Обратите внимание, что иногда отношение напряжения по частоте (V / f) может быть отличным от линейного, что характерно для вентиляторов, насосов или центробежных нагрузок, которые не требуют постоянного крутящего момента, но обеспечивают тем самым возможность экономии электроэнергии.


Рис. 3. Форма сигнала ШИМ напряжения на выходе частотного преобразователя

Как же отразится пилообразная форма питающего напряжения на работе электродвигателя. Асинхронный двигатель является по своей сути большой катушкой индуктивности. А характерной особенностью индукции является ее устойчивость к изменениям тока. Увеличивается или уменьшается сита ток, индукция будет выступать против этого изменения. Какое же это имеет отношение к форме сигнала напряжения ШИМ на рисунке 3? Вместо того, чтобы позволить импульсу тока увеличиваться в том же порядке, что и приложенный импульс напряжения, ток начнет медленно возрастать. Когда импульс напряжения закончился, ток плавно уменьшается, а не исчезает мгновенно. В общих чертах это происходит следующим образом: до момента, когда ток снизился до нуля, поступает следующий импульс напряжения, и ток начинает плавно увеличиваться. Если последующий импульс становятся шире, ток плавно достигает большего значения, чем раньше. В конце концов, текущий сигнал становится синусоидальным, хотя и с некоторыми зубчатыми переходами (см. Рис. 4).


Рис. 4. Форма сигнала тока на выходе частотного преобразователя

Однако не думайте, что вы можете подключить свой соленоид к фазам выходного напряжения ЧРП. Это всё же не совсем переменное напряжение.

Миф № 2: все частотные преобразователи одинаковы

В общем виде частотно-регулируемый привод сегодня является довольно зрелым продуктом. Большинство коммерчески доступных приводов содержат одни и те же базовые компоненты: мостовой выпрямитель, блок питания, конденсаторный блок постоянного тока и плата выходного инвертора. Разумеется, существуют различия в алгоритмах управления переключением транзисторов IGBT инвертора, надежности компонентов и эффективности схемы теплового рассеивания. Но основные компоненты остаются прежними.

Есть также исключения. Например, в некоторых ЧРП инвертер имеет три вывода. Такая схема позволяет выходным импульсам варьироваться от половинного до полного импульса сигнала напряжения (см. Рис. 5).


Рис. 5. Трехуровневый выходной сигнал напряжения

Для достижения трехуровневого выходного сигнала звено инвертора должно иметь в два раза больше выходных переключателей, а также запирающих диодов (см. Рис. 6). Преимущества трехуровневой схемы заключается в уменьшении перенапряжения на двигателе из-за гармонических волн, снижении синфазных помех, а также снижении паразитных токов на валах и подшипниках.


Рис. 6. Схема трехуровневого инвертора

Матричный инвертор является еще более нетипичным типом ЧРП. Частотные преобразователи с матричными инверторами не имеют шины постоянного тока или мостового выпрямителя. Вместо этого они используют двунаправленные переключатели, которые могут подключать любое из входящих фазных напряжений к любой из трех выходных фаз (см. Рис. 7). Преимущество этой схемы заключается в том, что мощность может свободно протекать от сети к двигателю или от двигателя к сети для рекуперативного привода постоянного тока. Недостатком является то, что на входе необходима установка фильтра, для обеспечения дополнительной индуктивности и фильтрации формы ШИМ, чтобы исключить негативное влияние на питающую сеть.


Рис. 7. Схема матричного ЧРП

Кроме частотных преобразователей с трехуровневыми выходами и инверторами матричного типа существуют также и другие типы частотно-регулируемых приводов. Таким образом миф о том, что все частотные преобразователи одинаковые развеян.

Миф № 3: Частотный преобразователь компенсирует коэффициентом мощности.

Нередко можно увидеть, что производители частотных преобразователей заявляют значение коэффициента мощности, например, равным 0,98 или почти 1. Действительно коэффициент мощности несколько улучшается после установки ЧРП перед асинхронным двигателем. ЧРП компенсирует реактивную мощность за счет конденсаторного звена. Однако полностью компенсировать фазовый сдвиг преобразователь частоты не может.

Полный коэффициент мощности должен включать реактивную мощность, вызываемую гармониками, создаваемыми в звене постоянного тока. Причиной является работа диодного моста. Важно помнить, что диод работает только тогда, когда напряжение на стороне анода выше, чем напряжение на стороне катода (прямое смещение). Это означает, что диоды открыты только на пике каждой временной фазы как положительной, так и отрицательной частей синусоидальной волны. Это приводит к волнообразной форме волны. Это также приводит к искажению входного тока и прерыванию (см. Рис. 8).


Рис. 7. Форма сигналов после выпрямителя

Чтобы вычислить истинный полный коэффициент мощности (PF), необходимо учесть эффекты гармоник. Следующее уравнение показывает, как гармоники влияют на полный коэффициент мощности:


где THD = суммарное гармоническое искажение

Для прерывистого сигнала входного тока в уравнении THD будет находиться в районе 100% или более. Подставляя это в уравнение, получаем истинный коэффициент мощности PF ближе к 0,71, по сравнению с заявленным 0,98, который не учитывает гармоники.

Но не всё так плохо. В настоящее время существует множество способов гармонические искажения, создаваемые в звене постоянного тока. Они используют как пассивные, так и активные методы подавления искажений входного сигнала. Так, например, вышеупомянутый матричный преобразователь частоты является примером активного метода подавления гармонических искажений.

Миф № 4: С частотным преобразователем Вы можете эксплуатировать двигатель на любой скорости.

Особенность применения частотных преобразователей заключается, что они могут изменять как напряжение, так и частоту выходного сигнала. Благодаря возможности обеспечения требуемой скорости вращения электродвигателя ЧРП нашли широкое применение во всех сферах экономики и всех отраслях промышленности ЧРП может легко выдавать сигнал любой частоту в пределах предусмотренного изготовителем диапазона регулирования. Однако необходимо учитывать, что частотный преобразователь работает в составе электродвигателя в реальных условиях. Технологические требования, такие как необходимый крутящий момент, охлаждение, требуемая мощность так или иначе ограничивают фактический диапазон регулирования преобразователя частоты.

Ограничение № 1. С точки зрения охлаждения электродвигателя, низкая скорость вращения — это не очень хорошая идея. В частности, полностью закрытые вентиляторные (TEFC) двигатели имеют охлаждаются только за счет внутреннего вентилятора, который вращается вместе с валом двигателя. Чем медленнее скорость вращения двигатель, тем меньше поток воздуха и тем хуже охлаждение. Закрытые двигатели обычно не рекомендуются эксплуатировать с частотой ниже 15 Гц (диапазон скоростей 4:1).

Ограничение № 2: Электродвигатели имеют определенные ограничения диапазона скоростей, связанные с механическими и динамическими ограничениями нагрузок вращающихся частей. Обычно эта скорость называется максимальной безопасной частотой вращения. Данная характеристика не всегда указывается на шильдике мотора.

Ограничение № 3: При достижении максимальной частоты вращения крутящий момент двигателя может снижаться. Это ограничение скорости связано с ограничением мощности, которое включает в себя скорость вращения и крутящий момент. Если быть еще точнее, что будет снижаться напряжения ЧРП. Обратите внимание, что вращение двигателя также генерирует собственное напряжение, называемое обратной электродвижущей силой (ЭДС), которое увеличивается со скоростью. Обратная ЭДС создается двигателем, чтобы противостоять приложенному напряжению от ПЧ. На более высоких скоростях ПЧ должен подавать еще большее напряжения, чтобы преодолеть обратную ЭДС, и ток мог протекать по обмоткам двигателя, создавая крутящий момент. После определенного максимального значения преобразователь частоты не может преодолеть обратную ЭДС электродвигателя, и, следовательно, крутящий момент двигателя уменьшается, что, в свою очередь, снижает скорость. Снижение скорости опять приводит к более низкой обратной ЭДС, которая, в свою очередь, позволяет протекать току в двигатель снова. Существует точка равновесия, в которой двигатель достигает максимальной скорости при максимальном крутящем моменте.

Как упоминалось выше ЧРП может создавать крутящий момент на двигателе, сохраняя постоянство отношения V/f (см. Рис. 9).


Рис. 9. График зависимости напряжения от частоты.

Когда частота выходного сигнала увеличивается, напряжение увеличивается линейно. Проблема возникает, когда частота превышает номинальную частоту двигателя. Помимо номинальной частоты, не может увеличиваться выходное напряжение, что соответственно приводит к уменьшению отношения V / f. Отношение V / f является мерой напряженности магнитного поля в двигателе и влияет на его крутящий момент. Следовательно, способность мотора создавать номинальный крутящий момент при частоте выше номинальной должна уменьшаться со скоростью 1 / частота, при этом произведение крутящего момента и частоты, равное мощности, является постоянным. Область работы над номинальной частотой называется постоянным диапазоном мощности, а работа на скоростях ниже номинальной — диапазоном постоянного крутящего момента (см. Рис. 10).


Рис. 10. Графики зависимости мощности и крутящего момента электродвигателя от частоты.

Возможно, это не миф, а недоразумение. Некоторые пользователи ПЧ измеряют значение выходного и входного тока с помощью измерительного инструмента или с помощью мониторов ПЧ и обнаруживают, что входной ток намного ниже выходного. Это похоже не согласуется с идеей о том, что частотный преобразователь должен иметь некоторые потери и поэтому вход всегда должен быть немного выше, чем выход. Концепция правильная, но она учитывает мощность, а не ток, который следует учитывать:

Привод потребляет входной ток, пропорциональный активному крутящему моменту двигателя. Ток, необходимый для создания магнитного поля, обычно не изменяется со скоростью и обеспечивается основными конденсаторами звена постоянного тока, которые заряжаются при включении питания ПЧ. При малых значения крутящего момента выходной ток может быть намного выше, чем входной, поскольку входной ток отражает только составляющую, создающую крутящий момент плюс некоторые гармоники, но не включает ток намагничивания. Ток намагничивания циркулирует между конденсаторами шины постоянного тока и двигателем. Даже при полной нагрузке входной ток обычно будет ниже, чем ток двигателя, поскольку на входе по-прежнему нет составляющей тока намагничивания.

В данной статье мы попытаемся разобраться с основами применения преобразователей частоты (частотно-регулируемого привода) в насосных установках.

Насосы и насосные установки

Определимся для начала с основными понятиями и принципами.

Насосная установка – это совокупность насосных агрегатов, трубопроводов, запорно-регулирующей арматуры, КИП, устройств управления и защиты.

Насосная установка характеризуется двумя основными параметрами: подача и напор.

Подача – это объем жидкости который способна перекачать насосная станция за единицу времени, измеряется в куб. метр / час.

Напор – это энергия необходимая для подъема жидкости на заданную высоту с преодолением сил трения в трубопроводной арматуре, измеряется в метрах. Напор и давление связаны между собой соотношением:

где H – напор; P – давление насоса; ρ – плотность жидкости; g – ускорение свободного падения.

Насосные установки по назначение делятся на:

  • Водопроводные (ВНС) – это насосные станции которые подают воду от водоема до очистных сооружений (ВНС I подъема) и от очистных сооружений в распределительную сеть трубопроводов (ВНС II подъема). Так же существуют промежуточные повысительные насосные станции, в случае когда необходимо создать достаточное давление для поднятия воды на требуемую высоту.
  • Канализационные (КНС) – перекачивают сточные воды к месту очистки.
  • Теплофикационные – предназначены для подачи горячей воды в системе горячего водоснабжения и отопления.
  • Технологические – насосные станции для перекачки различных жидкостей в технологических процессах.

Основы применения частотных преобразователей в насосных установках

Главная КНС Нижнего Новгорода

По виду рабочей камеры насосы делятся на динамические и объемные, те в свою очередь на лопастные, электромагнитные, трения, крыльчатые, роторные, возвратно-поступательные и другие.

В наше время чаще всего используются лопастные насосы: центробежные и осевые.

В основе работы центробежного насоса лежит действие центробежной силы на перекачиваемую жидкость. При вращении рабочего колеса жидкость приходит во вращение и под действием центробежной силы перемещается от центра колеса на периферию, а далее в напорную трубу.

Жидкость в осевом насосе перемещается вдоль оси насоса за счет воздействия лопастей рабочего колеса и создания разности давления под и над лопастью. По принципу работы он схож с пропеллером самолета или бытовым вентилятором.

Основной характеристикой насоса является зависимость напора от подачи, которая называется напорно-расходной.

Основы применения частотных преобразователей в насосных установках


Пример напорно-расходной характеристики насоса

В качестве электропривода насосов в основном используются асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели переменного тока. Реже используются асинхронные двигатели с фазным ротором.

В статье мы рассмотрим работу насосных установок на примере центробежных насосов.

Режимы работы

Теперь рассмотрим режимы работы насосных установок и определимся от чего зависит тот или иной режим.

Режим работы насосных установок зависит либо от изменения расхода у потребителей, либо от притока сточной жидкости, в случае с канализационными насосными станциями.

Режимы водопотребления характеризуются временными графиками и бывают суточными, недельными, месячными и т.д.

Основы применения частотных преобразователей в насосных установках

Пример суточного графика водопотребления за трое суток

Подача насосных установок, работающих без промежуточных емкостей, должна быть равна потреблению. При увеличении потребления подачу необходимо увеличивать, при этом также увеличиваются потери напора в трубопроводах. Поэтому следует также увеличивать давление, которое развивают насосные установки. При уменьшении водопотребления следует снизить подачу и давление.

Ранее для регулирования характеристик насосных установок использовалось изменение числа работающих насосов и степени открытия задвижек. Теперь с появлением частотных преобразователей регулируется частота вращения рабочих колес насосов.

При работе с промежуточной (аккумулирующей) емкостью подача насосной установки отличается от потребления. В этом случае, если нет частотных преобразователей, насосные агрегаты включаются, когда уровень воды достиг минимальной отметки, и отключаются, когда уровень достигает верхней заданной отметки, и так далее по циклу.Таких циклов в сутки может быть до 50, а в некоторых случаях и до 100. Такое количество пусков, особенно для двигателей большой мощности, негативно сказывается на состоянии электроприводов.

Изменение характеристик центробежных насосов можно осуществить двумя способами: изменением степени открытия задвижки на напорном трубопроводе и изменением частоты вращения рабочего колеса насоса.

  • регулирование задвижкой (дросселирование) – уменьшая степень открытия задвижки, мы уменьшаем подачу насоса, напор перед задвижкой увеличивается, а после задвижки уменьшается из-за потери напора на запорной арматуре. Открывая задвижку, мы увеличиваем подачу, напор который создает насос уменьшается, а напор за задвижкой увеличивается. Этот способ крайне неэкономичный, так как большое количество энергии теряется на сопротивлении запорной арматуры.

Основы применения частотных преобразователей в насосных установках

Регулирование задвижкой

  • регулирование изменением частоты вращения насосов – при таком регулировании при снижении частоты вращения, кривая напорно-расходной характеристики насоса перемещается вниз. Подача, напор насоса и напор в трубопроводе одновременно уменьшаются. При увеличении частоты вращения насоса, увеличивается подача и напор насоса, и напор в сети.

Основы применения частотных преобразователей в насосных установках

Частотное регулирование

Данный способ регулирования является более экономичным, но требует применения частотных преобразователей.

При регулировании с помощью частотных преобразователей снижение энергопотребления равно потерям, которые обусловлены повышением напоров при работе насосов с постоянной частотой вращения.

Особенности работы насосов при изменении частоты вращения

При регулировании насоса изменением частоты вращения обеспечивается перемещение рабочей точки насоса по кривой характеристики трубопровода, а не насоса, как в случае с дросселированием. При этом избыточные напоры отсутствуют и обеспечивается минимальное энергопотребление.

Регулирование частоты вращения насосов в насосной установке дает возможность оптимально распределить нагрузки между насосами, выровнять их КПД и удерживать в зоне оптимальных КПД их рабочие точки, снизив затраты энергии к минимальным значениям.

При изменении частоты вращения насоса пропорционально изменяются и все его характеристики. Но при низкой частоте вращения порядка 10-15% от номинальной происходит нарушение зависимости между подачей и напором насоса. Его характеристики теперь нельзя представить в виде параболической кривой, а только россыпью точек. Потому диапазон регулирования частоты вращения насоса не должен выходить за предельную нижнюю границу.

Так же при работе насосов с пониженной частотой вращения могут возникнуть такие опасные явления как кавитация и помпаж.

Кавитация – это явление при котором поток жидкости перестает быть сплошным, сопровождающееся образованием пузырьков газов и паров жидкостей. Кавитация опасна дополнительными потерями электроэнергии и разрушением рабочих элементов насоса. Она может возникнуть в случае если существующий напор на всасывающем трубопроводе меньше требуемого. При снижении частоты вращения насоса, также в большую сторону увеличивается требуемое значение напора на всасывающем трубопроводе, что следует учитывать во избежание возникновения кавитации.

Помпаж – может возникнуть в насосах с неустойчивыми (лабильными) напорно-расходными характеристиками при пересечении лабильной характеристики насоса с характеристикой трубопровода в двух точках. В этом случае насос начинает попеременно работать с параметрами двух точек и вся система становится неустойчивой. Происходят гидравлические удары, резкое закрытие обратных клапанов, частое изменение потребляемой мощности и нестационарные режимы работы сети электроснабжения. Работа в таком режиме недопустима !

При оснащении насосных установок частотно-регулируемым приводом следует не забывать о том, что:

Читайте также: