Нагревание утюга какое явление

Обновлено: 26.04.2024

Тела состоят из атомов и молекул. Тепло — это результат хаотичного движения частиц этих веществ. Нагревание тела означает, что скорость частиц увеличивается. Говорят, что увеличивается внутренняя энергия тела. Внутренней энергией тела называют сумму кинетической энергии (энергии движения) образующих его частиц и их потенциальной энергии (энергии их взаимодествия).

Если изменяется кинетическая и потенциальная энергия частиц, то изменяется и внутренняя энергия тела.

Внутреннюю энергию тела можно менять, производя работу (натирая, деформируя, ударяя тело), а также нагревая или охлаждая его.

Ту внутреннюю энергию, которую тело отдаёт другим телам, не совершая при этом работы, называют количеством теплоты .
Тела, которые отдают внутреннюю энергию, называют источниками тепла .

Тепловыми явлениями называют различные связанные с теплотой действия, которые происходят в природе. Тепловые явления вызывают естественные и искусственные источники тепла . Естественными источниками тепла являются Солнце, огонь, молния. Искусственными источниками тепла являются печь, радиатор, электрическая плита.

zibens_liels.JPG

Молния появляется в результате электрического разряда между облаками или между облаками и землёй, и она является естественным источником тепла.

Тепловые явления вызывает также трение тел . В результате трения нагревается мотор машины и зубоврачебное сверло, загораются спички. Различные вращающиеся и движущиеся детали механизмов подвержены нагреванию в результате трения, поэтому механизмы смазывают, чтобы уменьшить трение.

stockvault-lumberjack-worker-with-chainsaw131012.jpg

В результате трения возможно даже получить огонь, это первый в истории способ получения огня искусственным путём.

Как устроен и работает терморегулятор электрического утюга

Всем знаком электрический утюг с терморегулятором. Это несложное устройство содержит все элементы автоматического регулятора.

Объектом регулирования является металлическое основание утюга, имеющее гладкую наружную поверхность (гладильная поверхность), а регулируемой величиной — температура гладильной поверхности.

В зависимости от рода ткани температура гладильной поверхности должна поддерживаться в определенных пределах. Так, для глажения синтетической ткани необходимо, чтобы температура подошвы утюга была равна 60 — 90°С, при глажении шелковой ткани — 100 — 130°С, а льняной — 160 — 200°С.

Устройство утюга

Исполнительным органом терморегулятора является электрический нагревательный элемент. При включении в электросеть он, нагреваясь, отдает некоторое количество теплоты основанию (подошве) утюга, при этом температура последнего повышается.

Если нагревательный элемент выключен, то температура основания утюга понижается, так как идет передача количества теплоты разглаживаемой ткани и окружающему воздуху. Этот процесс выступает как внешнее воздействие на объект регулирования.

Замыкание и размыкание цепи нагревательного элемента производятся контактной парой, включенной последовательно в эту цепь.

Контроль температуры подошвы утюга осуществляется с помощью специального датчика. Его действие основано на использовании биметаллической пластины, которая состоит из двух разнородных металлических слоев (например, железного и алюминиевого, железного и медного).

Известно, что различные металлы при нагревании расширяются неодинаково. Например, при одинаковом повышении температуры железной и алюминиевой пластин одной длины удлинение алюминиевой оказывается вдвое больше удлинения железной пластины.

При нагревании биметаллической пластины она изгибается в сторону слоя, который расширяется меньше. При этом изгиб пластины получается тем больше, чем больше изменение температуры.

Устройство утюга с автоматическим регулятором температуры

Устройство утюга с автоматическим регулятором температуры: (1 — подошва утюга; 2 — биметаллическая пластина; 3 — контактная пара; 4 — верхняя контактная пластина; 5 — нижняя контактная пластина; 6 — диск — задатчик значения температуры; 7 — поворотный клин задатчика)

В терморегуляторе утюга конец биметаллической пластины 2 прикрепляется к подошве 1, второй управляет подвижным контактом контактной пары 3, которая выполняет функцию органа сравнения (нуль-органа) терморегулятора.

С повышением температуры основания утюга нагревается и биметаллическая пластина. При этом она изгибается и ее свободный конец начинает перемещаться. Такое перемещение и есть информация об изменении температуры, которая поступает в нуль-орган в форме определенного перемещения верхнего контакта.

При остывании утюга пластина изгибается в обратную сторону и верхний контакт опускается. При его соприкосновении с нижним контактом нагревательный элемент (исполнительный орган) включается и температура утюга начинает повышаться. После соответствующего повышения температуры верхний контакт снова поднимается, и цепь нагревательного элемента разомкнётся. Утюг снова начнет остывать.

Устройство и принцип работы терморегулятора электрического утюга

Устройство и принцип работы терморегулятора электрического утюга

Температура подошвы утюга колеблется между верхним и нижним значениями, поэтому здесь можно говорить о поддержании определенной средней температуры, значение которой задается перемещением вверх или вниз нижнего контакта, что осуществляется поворотом диска в задатчика.

Нижний контакт укреплен на свободном конце плоской пружины. В нее упирается поворотный клин, прикрепленный к диску. При повороте диска в ту или другую сторону нижний контакт перемещается вверх или вниз.

Чем выше располагается нижний контакт, тем среднее значение температуры, поддерживаемое регулятором, будет больше. Таким образом, поворотом диска задатчика в нуль-орган вводится информация о том, какой должна быть температура основания утюга.

Терморегулятор для электрического утюга

Терморегулятор для электрического утюга

В рассмотренном примере имеются все элементы системы автоматического регулирования, кроме усилителя, в котором в данном случае нет необходимости, так как сигнал органа сравнения (замыкание или размыкание контактной пары) достаточен для включения или выключения исполнительного органа (нагревательного элемента).

Такой регулятор применяется также в бытовом электрическом масляном радиаторе, где он служит для поддержания задаваемой средней температуры поверхности, и в некоторых других бытовых и производственных установках.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Актуальность: в природе мы являемся свидетелями тепловых явлений, но порой, не обращаем внимания на их сущность. Например, летом идёт дождь, а зимой снег. Образуется роса на листьях. Появляется туман. Зимой моря и реки покрываются льдом, а весной этот лед тает. Значение тепловых явлений в жизни человека очень велико. К примеру, незначительное изменение температуры организма означает заболевание. Температура внешней среды в любом точке Земли меняется как в течение суток, так и в течение года. Организм сам по себе не может компенсировать изменение температуры при теплообмене со средой, и нужно принимать какие-то дополнительные меры: т.е. надеть соответствующую одежду, строить жильё с учетом условий местности, где живут люди, ограничивать пребывание человека в среде, температура которой отличается от температуры организма.

Гипотеза: благодаря научным знаниям и достижениям созданы легкие, прочные малотеплопроводные материалы для одежды и защиты жилища, кондиционеры, вентиляторы и прочие приспособления. Это позволяет нам преодолевать трудности и многие проблемы, связанные с теплом. Но все же изучать тепловые явления необходимо, так как они имеют исключительно большое влияние на нашу жизнь.

Цель: изучение тепловых явлений и тепловых процессов.

Задачи: рассказать о тепловых явлениях и тепловых процессах;

изучить теорию тепловых явлений;

на практике рассмотреть существование тепловых процессов;

показать проявление этих опытов.

Ожидаемый результат: проведение опытов и изучение наиболее распространенных тепловых процессов.

Результат работы над проектом: подобран и систематизирован материал по теме, проведены опыты и блиц – опрос учащихся, подготовлена презентация, представлено стихотворение собственного сочинения.

Тепловые явления – физические явления, которые связаны с нагреванием и охлаждением тел.

Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация – все это примеры тепловых явлений.

Тепловое движение - процесс хаотичного (беспорядочного) движения

частиц, образующих вещество.

Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул. Молекулы или атомы вещества всегда находятся в постоянном беспорядочном движении.

Это движение обусловливает собой наличие в любом веществе внутренней кинетической энергии, которая, связана с температурой вещества.

Поэтому, беспорядочное движение, в котором всегда находятся молекулы или атомы, называется тепловым.

Изучение тепловых явлений показывает, что насколько в них уменьшается механическая энергия тел, настолько же увеличивается их механической и внутренней энергий, при любых процессах остаётся неизменной.

В этом заключается закон сохранения энергии.

Энергия не возникает из ничего и не исчезает никуда.

Она может лишь переходит из одного вида в другой, сохраняя своё полное значение.

Тепловое движение молекул никогда не прекращается. Поэтому любое тело всегда обладает какой-то внутренней энергией. Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов и не зависит от механического положения тела и его механического движения. Изменение внутренней энергии тела без совершения работы называется теплопередачей.

Теплопередача всегда происходит в направлении от тела с большей температурой к телу с меньшей температурой.

Существует три вида теплопередачи:

Тепловые процессы – разновидность тепловых явлений; процессы, при которых меняется температура тел и веществ, а также возможно изменение их агрегатных состояний. К тепловым процессам относятся:

Парообразование

Кристаллизация

Десублимация

Рассмотрим в качестве примера вещество, которое может находиться в трёх агрегатных состояниях: вода (Ж- жидкое, Т- твердое,Г- газообразное)

Нагревание – процесс повышения температуры тела или вещества. Нагревание сопровождается поглощением теплоты из окружающей среды. При нагревании агрегатное состояние вещества не изменяется.

Опыт 1: Нагревание.

Наберём воду из крана в стакан и измерим её температуру (25°C),

затем поставим стакан на теплое место (окно на солнечной стороне), и через некоторое время измерим температуру воды (30°C).

Подождав ещё некоторое время, я еще раз измерила температуру (35°C). Вывод: термометр показывает увеличение температуры сначала на 5°C, а потом и на 10°C.

Охлаждение – процесс, понижения температуры вещества или тела; Охлаждение сопровождается выделением теплоты в окружающую среду. При охлаждении агрегатное состояние вещества не изменяется.

Опыт 2: Охлаждение.Посмотрим как происходит охлаждение на опыте.

Из крана в стакан наберём горячую воду и измерим её температуру (60°C) затем этот стакан на некоторое время поставим на подоконнике, после чего измерим температуру воды и она стала равной (20°C).

Вывод: вода охлаждается и термометр показывает понижение температуры.

Опыт 3: Кипение.

С кипением мы каждый день сталкиваемся дома.

Нальём в чайник воду и поставим его на плиту. С начала вода нагревается, а затем происходит кипения воды. Об этом свидетельствует пар, выходящий из носика чайника.

Вывод: при кипении воды, пар из горлышка чайника выходит через маленькое отверстие и свистит и мы выключаем плиту.

Испарение – это парообразование , происходящее со свободной поверхности жидкости.

Испарение зависит от:

Температуры вещества (чем выше температура, тем интенсивнее испарение);

Площади поверхности жидкости (чем больше площадь, тем больше испарение);

Рода вещества (разные вещества испаряются с разной скоростью);

Наличия ветра (при наличии ветра испарение происходит быстрее).

Опыт 4: Испарение.

Если Вы когда-нибудь наблюдали за лужами после дождя, то Вы, несомненно, замечали, что лужи становятся меньше и меньше. Что произошло с водой?

Вывод: она испарилась!

Кристаллизация (отвердевание) – это переход вещества из жидкого агрегатного состояния в твердое. Кристаллизация сопровождается выделением энергии (теплоты) в окружающую среду.

Опыт 5: Кристаллизация. Чтобы обнаружить кристаллизацию, проведём опыт.

Наберём воду из крана в стакан и поставим в морозильную камеру холодильника. Через некоторое время происходит процесс отвердевания вещества, т.е. на поверхности воды появляется корка. Затем вся вода в стакане полностью превратилась в лед, то есть кристаллизуется.

Вывод: сначала вода охлаждается до 0 градусов, затем замерзает.

Плавление – переход вещества из твердого состояния в жидкое. Этот процесс сопровождается поглощением теплоты из окружающей среды. Чтобы расплавить твёрдое кристаллическое тело ему необходимо передать некоторое количество теплоты.

Опыт 6: Плавление.Плавление легко обнаруживается на опыте.

Достаём из морозильной камеры холодильника стакан с замёрзшей водой, который поставили мы. Через некоторое время в стакане появилась вода – лед начал таять. Спустя некоторое время весь лед растаял, то есть полностью перешел из твердого в жидкое.

Вывод: лёд с течением времени получает тепло от окружающей среды и со временем растает.

Конденсация –переход вещества из газообразного состояния в жидкое.

Конденсация сопровождается выделением теплоты в окружающую среду.

Опыт 7: Конденсация.

Мы вскипятили воду и поднесли к носику чайника холодное зеркало. Через несколько минут на зеркале четко видны капли конденсировавшегося водяного пара.

Вывод: пар оседая на зеркале превращается в воду.

Явление конденсации можно наблюдать летом, ранним прохладным утром.

Капельки воды на траве и цветах – роса – свидетельствуют о том, что водяной пар, содержавшийся в воздухе, конденсировался.

Сгорание – процесс сжигания топлива, сопровождающийся выделением энергии.

Эта энергия используется в различных

сферах нашей жизни.

Опыт 8: Сгорание. Каждый день мы можем наблюдать, как сгорает природный газ в горелке плиты. Это и есть процесс сгорания топлива.

Также процессом сгорания топлива является процесс сжигания дров. Поэтому, чтобы провести опыт по сгоранию топлива, достаточно только зажечь газовую

горелку или спичку.

Вывод: при сгорании топлива выделяется тепло, может появиться специфический запах.

Результат работы над проектом:в своей проектной работе я изучила наиболее распространенные тепловые процессы: нагревание, охлаждение, парообразование, кипение, испарение, плавление, кристаллизация, конденсация, сгорание, сублимации и десублимации.

Кроме того, в работе были затронуты такие темы, как тепловое движение, агрегатные состояния веществ, а также общая теория по тепловым явлениям и тепловым процессам.

На основе простейших опытов рассматривалось то или иное тепловое явление. Опыты сопровождаются демонстрационными картинками.

На основе опытов рассмотрено:

- существование различных тепловых процессов;

доказана актуальность тепловых процессов в жизни человека.

Блиц – опрос учащихся 9 класса.

Вопросы:

1. Что такое тепловые явления?

2. Приведите примеры тепловых явлений

3. Какое движение называют тепловым?

4. Что такое теплопроводность?

5. Агрегатные превращения – это…

6. Явление превращения жидкости в пар?

7. Явление превращения пара в жидкость?

8. Какой процесс называется плавлением?

9. Что такое испарение?

10. Назовите процессы, обратные нагреванию, плавлению, испарению?

Ответы:

1. Тепловые явления - физические явления, связанные с нагреванием и охлаждением тел

2. Примеры тепловых явлений: нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация

3. Тепловое движение – беспорядочное, хаотическое движение молекул

4. Теплопроводность – передача тепла от одной части к другой

5. Агрегатные превращения – это явления перехода вещества из одного агрегатного состояния в другое

6. Парообразование

7. Конденсация

8. Плавление – переход вещества из твердого состояния в жидкое. Этот процесс сопровождается поглощением теплоты из окружающей среды

9. Испарение – это парообразование, происходящее со свободной поверхности жидкости

10. Процессы, обратные нагреванию, плавлению, испарению – охлаждение, кристаллизация, конденсация

Результаты блиц - опроса:

1. Правильный ответ – 7 чел – 47%

Неправильный ответ – 8 чел – 53%

2. Правильный ответ –6 чел – 40%

Неправильный ответ –9 чел – 60%

3. Правильный ответ – 10 чел – 67%

Неправильный ответ – 5 чел – 33%

4. Правильный ответ –6 чел – 40%

Неправильный ответ – 9 чел – 60%

5. Правильный ответ – 8 чел – 53%

Неправильный ответ – 7 чел – 47%

6. Правильный ответ – 12 чел – 80%

Неправильный ответ – 3 чел – 20%

7. Правильный ответ – 8 чел – 53%

Неправильный ответ – 7 чел – 47%

8. Правильный ответ – 10 чел – 67%

Неправильный ответ – 5 чел – 33%

9. Правильный ответ – 13 чел – 87%

Неправильный ответ – 2 чел – 13%

10. Правильный ответ – 8 чел –53%

Неправильный ответ – 7 чел – 47%

Блиц-опрос показал, что ученики не достаточно знакомы с этой темой, и я надеюсь, что мой проект поможет им восполнить недостающие пробелы по данной теме.

Поставленная мною цель и задачи проектной работы выполнены.

Закончить свою работу хочу стихотворением, которое мы сочинили вместе с моим дедушкой.

Тепловые явления

Мы явления изучаем,

Про тепло познать желаем.

Мы живем в чудесном мире -

Все, как дважды два - четыре.

Выполняем мы работу,

Раскачав молекул роту,

Колем на дрова бревно -

Нам становится тепло.

Очень важная задача-

Тепло можно передать,

От воды нагретой взять.

Все тела теплопроводны:

Вода греет радиатор,

Воздух снизу вверх идет,

В дом тепло передает.

А оконное стекло

В доме бережет тепло.

В раме есть воздушный слой -

Для тепла стоит горой.

Он тепло не пропускает

И в квартире сохраняет.

Ну а днем, мы знаем сами,

Солнце даст тепло лучами…

Чтоб познать все свойства эти,

В дружбе жить с теплом на свете,

И на деле применить -

Надо ФИЗИКУ учить.

Список литературы


Старт в науке

Чрезмерно высокая температура утюга испортит деликатные ткани в одно мгновение, а недостаточный нагрев сделает глажку утомительной и долгой. Избежать бытовых неприятностей поможет информированность о режимах термообработки, минимальной и максимальной температуре утюга и способах ее определения.

Температурные режимы: расшифровка точек на регуляторе температуры

Выбранный температурный режим должен соответствовать правилам ухода за вещью. Для удобства пользователя они нанесены на этикетках изделий в виде картинок. На графических правилах также повторяются точки: одна, две или три. Такие изображения не случайны, каждое означает определенный режим глажки утюга.



Режим единички значит, что температура нагрева позволяет гладить ткани, требующие деликатного ухода:

  • шелк,
  • шифон,
  • нейлон,
  • ацетат,
  • полиамид,
  • вискоза,
  • капрон.

На материал будет воздействовать t до 110 ˚С.



Для идеального разглаживания более термоустойчивых тканей потребуется установить колесико на 2 точки. Такой режим температуры подойдет для:

  • полиэстера;
  • шерсти,
  • полушерсти.

При такой t возможно паровое глаженье.



Максимального нагрева при глажке требуют ткани:

Термовоздействие достигает 200 ˚С. Процесс глажки облегчается благодаря возможности воздействия паром.

А что значат остальные обозначения о термообработке?

Прочие режимы представлены в таблице:


Гладить ткань можно

Глажка возможна только при температуре не выше 140˚С. Если на приборе нет обозначений — следует установить колесико по центру. Температура будет соответствовать 130-140˚С

Применять утюг для глажки запрещено

Для разглаживания вещей запрещено применять парообработку

Температурные режимы утюга в градусах

Терморежим утюгаМинимальная t (˚С)Номинальная t (˚С)Максимальная t (˚С)
7595115
⚫⚫150130155
⚫⚫⚫145175205

Нагрев бытового утюга в пределах подошвы может разниться на 10 ˚С.

До скольки градусов максимально нагревается утюг

Для тканей, наиболее плохо поддающихся глажке, необходимо применять максимальную температуру нагрева утюга в градусах, равную 205˚С. При этом скорость нагрева будет зависеть от вида материала, из которого изготовлена подошва утюга, и мощности электроприбора.

Скорость нагревания в зависимости от материала подошвы

Подошва изготавливается из:

Максимальные температуры в разных моделях могут разниться, поэтому прежде чем выбрать режим необходимо ознакомиться с инструкцией.

Если в утюге только один режим нагрева, нет функции разбрызгивания и парообработки, температура подошвы утюга будет 115 ˚С (±10).

Утюги с капельной системой немного горячее — около 155 ˚С.

Электроприборы с возможностью парообработки достигают температуры 175-205 ˚С.

Влияние мощности электроприбора

В бытовых моделях мощность колеблется от 800 до 2200 Вт. Модели, не оснащенные терморегулятором и увлажнителем, имеют боле низкую мощность — в пределах 400 Вт. Гладить ими гораздо сложнее, нагреваются они медленнее, быстро охлаждаются.

Совет! Для использования в быту подойдет утюг мощностью от 1500 до 2200 Вт. Любителям гладить большое количество вещей с максимальным комфортом подойдут модели с мощностью, приближенной к 2700-2800 Вт, однако стоит удостовериться, что проводка выдержит такое напряжения, и не включать несколько электроприборов одновременно.

Профессиональная многочасовая глажка, например, в прачечной или химчистке, потребует приобретение более дорогостоящего и мощного прибора — от 2800 Вт. Нагрев в таких моделях происходит максимально быстро, а паровой удар предельно мощный (около 230 г/мин).

Минимальная температура утюга

В утюгах без терморегулятора температура нагрева около 115 ˚С. Поскольку деликатный режим обработки изделия выбрать невозможно, следует начинать глажку с изнаночной стороны, увлажняя ткань.

При выравнивании вещи, не подлежащей глажке, даже выставленный на одну точку режим может ее испортить. Для безопасной обработки ткани необходимо:

  • увлажнить ее с пульверизатора и повесить для разравнивания;
  • воздействовать паром;
  • прогладить, расположив вещь между двумя слоями ткани: снизу — сухой, сверху — влажной.

Совет! Перед парообработкой необходимо удостоверится, что из сопел не выходят частицы ржавчины и капли воды, которые могут оставить разводы. Предотвратить загрязнение поможет съемная насадка на подошву утюга.

Температура пара в утюге

В бытовых моделях сила парового воздействия составляет около 20-25 г/мин. Более профессиональная техника позволяет воздействовать паром, поступающем с интенсивностью от 160 г/мин. При этом температура пара достигает 160-210 ˚С в зависимости от характеристик модели.

Как узнать температуру утюга

  1. Сбрызнуть утюг и дождаться шипения. Это значит, что температура выше 100 ˚С.
  2. Прогладить натуральную шерсть. Если ворсинки стали сухими и ломкими — температура близка к 105 ˚С, а если появился неприятный запах жженных волос — нагрев достиг отметки в 120 ˚С.

Чтобы не рисковать любимыми вещами, важно точно знать, какой температуры достигла подошва утюга. Лучше экспериментировать, а приобрести прибор с терморегулятором, следовать инструкции к использованию, изучать ярлыки на одежде перед глажкой. В случае подозрения на поломку — произвести замер t с помощью специального термометра и отремонтировать электроприбор по гарантийному талону.

  • Участник: Коршунова Анастасия Владимировна
  • Руководитель: Ирхина Елена Юрьевна

Аннотация

Мир физических явлений чрезвычайно разнообразен. Физика обладает необыкновенным свойством. Изучая самые простые явления можно вывести общие законы. Многие физические закономерности можно получить из собственных наблюдений. Замечательным местом для наблюдения физических явлений и проведения экспериментов является самая обычная кухня.

Кухня – это место, которое мы посещаем постоянно. Мы даже не задумываемся, что там могут происходить какие-то физические явления. В повседневной жизни мы не найдём другого такого места, где происходило бы столько удивительного и загадочного, как в кухне. Именно здесь мы смешиваем, нагреваем, охлаждаем, замораживаем, размораживаем, а бывает, что и сжигаем всевозможные виды животного, растительного и неорганического сырья. В этом месте происходит множество явлений: световые, тепловые, электрические, электромагнитные и др.

Цель работы: рассмотреть тепловые явления на кухне.

Актуальность работы: работа на кухне не осуществима без тепловых явлений особенно во время технического мира. Время не стоит на месте, люди придумывают все больше техники, а без знаний физики будет невозможен прогресс.

Задачи:

  1. Изучить 3 взаимосвязанных тепловых явлений.
  2. Объяснить их с физической точки зрения.
  3. Исследовать историю открытия явлений.
  4. Найти интересные факты.
  5. Провести анализ полученных данных.

Для начала, что же такое тепловые явления? Тепловые явления – это явления, связанные с нагреванием или охлаждением тел, с изменением температуры. К таким явлениям относятся, например, нагревание и охлаждение воды в емкости, таяние льда, плавление металлов и др. [1] Итак, какие же тепловые явления мы встречаем на кухне? Испарение, кипение, конвекция, теплопроводность, изменение агрегатного состояния веществ – все это тепловые явления. Таким образом, рассмотрим 3 явления. Это конвекция, теплопроводность и кипение.

Конвекция

Конвекция – это вид теплопередачи, при котором внутренняя энергия передается струями и потоками. [3]

Рассмотрим применение конвекции на кухне. Когда мы готовим пищу на плите, то жидкость из холодной превращается в теплую. Почему так происходит? Все дело в том, что здесь проявляется явление конвекция. Жидкость при конвекции нагревается снизу вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются вверх более тяжелыми холодными слоям. Холодные слои жидкости, опустившись вниз, в свою очередь, нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся жидкость равномерно прогревается. Различают два вида конвекции: естественную (или свободную) и вынужденную. Так, нагревание жидкости является примером естественной конвекции. (Рисунок 2) Вынужденная конвекция наблюдается, если перемешивать жидкость мешалкой, ложкой и т.д. Если жидкости прогревать не снизу, а сверху, то конвекция не происходит. Нагретые слои не могут опускаться ниже холодных, более тяжелых. [3]

С явлением конвекции связаны процесс охлаждение продуктов в холодильнике. Газ фреон, циркулирующий по трубкам холодильника, охлаждает воздух в верхней части холодильной камеры. Холодный воздух, опускаясь, охлаждает продукты, а затем снова поднимается вверх. Решетка сзади холодильника предназначается для отвода тепла, образующегося при сжатии газа в компрессоре. Механизм ее охлаждения также конвективный, поэтому надо оставлять пространство за холодильником свободным для конвективных потоков. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов. Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.По этим примерам можно понять, что конвекция играет большую роль на кухне. Она помогает при приготовлении пищи в духовке или просто на плите, сохраняет продукты от жары в холодильнике. Все это помогает поддерживать нормальную функциональную жизнедеятельность людям.

Кипение

Кипение – это интенсивный переход жидкости в пар, происходящий с образованием пузырьков пара по всему объему жидкости при определенной температуре. (Рисунок 3)

Энергия кипения воды широко используется человеком в быту. Данный процесс стал настолько обыденным и привычным, что никто не задумывается о его природе и особенностях. [1] Тем не менее с кипением связан целый ряд интересных фактов:

  1. Наверное, все замечали, что в крышке чайника есть отверстие, но мало кто задумывается о его предназначении. Оно проделывается с той целью, чтобы частично выпускать пар. В противном случае вода может расплескаться через носик.
  2. Продолжительность варки картофеля, яиц и прочих продуктов питания не зависит от того, насколько мощным является нагреватель. Имеет значение лишь тот факт, как долго они находились под воздействием кипящей воды.
  3. На такой показатель, как температура кипения, никак не влияет мощность нагревательного прибора. Она может сказаться лишь на скорости испарения жидкости.
  4. Кипение связано не только с нагреванием воды. При помощи данного процесса можно также заставить жидкость замерзнуть. Так, в процессе кипения нужно производить непрерывную откачку воздуха из сосуда.
  5. Одна из самых актуальных проблем для хозяек заключается в том, что молоко может "убежать". Так, риск этого явления значительно повышается во время ухудшения погоды, которое сопровождается падением атмосферного давления.
  6. Самый горячий кипяток получается в глубоких подземных шахтах.
  7. Путем экспериментальных исследований ученым удалось установить, что на Марсе вода закипает при температуре 45 градусов Цельсия.

Как же происходит этот процесс и от чего он зависит? При нагревании какой-либо жидкости мы увидим ряд особенностей. Прежде всего обратим внимание на то, что с поверхности жидкости происходит испарение. На это указывает туман, образовавшийся над емкость. Это водяной пар смешивается с холодным воздухом и конденсируется в виде маленьких капель. Сам пар, конечно, невидим глазу. При дальнейшем повышении температуры мы заметим появление в жидкости многочисленных мелких пузырьков. Они постепенно увеличиваются в размерах. Это пузырьки воздуха, который растворен в воде. При нагревании воздух выделяется из воды в виде пузырьков. Эти пузырьки содержат не только воздух, но и водяной пар, так как вода испаряется внутрь этих пузырьков воздуха. Поднимающиеся пузырьки, попадая в более холодные слои воды, уменьшаются в размерах, так как содержащиеся в них пары конденсируются и под действием силы тяжести они опускаются. Спустившись вниз, в более горячие слои воды, пузырьки начинают снова подниматься к поверхности. Это попеременное увеличение и уменьшение пузырьков в размерах сопровождается характерным шумом, предшествующим закипанию воды. Постепенно вся вода прогревается, пузырьки уже не уменьшаются в размерах. Под действием архимедовой силы они всплывают на поверхность и лопаются. Находящийся в них насыщенный пар выходит наружу. Шум прекращается, и мы слышим бульканье – жидкость закипела. [3]. Кипение от начала до конца происходит при определенной и постоянной для каждой жидкости температуре. (Таблица 1) Поэтому при варке пищи нужно уменьшать огонь после того, как вода закипит. Это даст экономию топлива, а температура воды все равно сохраняется постоянной во время кипения. [1]

Все выше сказанное дает понять, что если бы не кипение, то можно было нагревать пищу и не узнать когда она приготовилась, или мы просто ели холодную пищу.

Теплопроводность

Теплопроводность – явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте. [2]

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы, так их теплопроводность и прочность выше, чем у других материалов. (Таблица 2) Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается еде. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых еде передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Обычно в кастрюлю на огне наливают в воду, в которую ставят вторую кастрюлю с едой. Температура здесь регулируется благодаря более низкой теплопроводности воды и вследствие того, что температура нагревания внутренней кастрюли не превышает температуры кипения воды, то есть 100° C (212° F). Такой способ часто применяют с продуктами, которые легко пригорают или которые нельзя кипятить, например, шоколад. [4]. Металлы, которые очень хорошо проводят тепло — медь и алюминий. Медь более теплопроводна, но и стоит дороже. Из обоих металлов делают кастрюли, но некоторая еда, особенно кислая, реагирует с этими металлами, и у еды появляется металлический привкус. За такими кастрюлями, особенно за медными, необходим тщательный уход, поэтому на кухне чаще используют более дешевые и удобные в обращении и уходе кастрюли из нержавеющей стали. (Рисунок 4)

Потребности в теплопроводности зависят от способа приготовления пищи и от вкуса и консистенции, которой хочет добиться повар. Например, при варке обычно нужна более низкая теплопроводность, чем при жарке. Теплопроводность регулируют, выбирая разную посуду, а также используя продукты с большим или меньшим содержанием жидкости. Например, количество масла на дне кастрюли или сковородки влияет на теплопроводность, так же, как и общее количество жидкости в продукте. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. [2]. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью. [4]. Материалы с невысокой теплопроводностью также используют для поддержания температуры еды неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них еда остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, еде — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для еды навынос. Таким образом, теплопроводность играет важную роль на кухне. Без нее нельзя было бы даже взять кастрюлю или сковородку в руку, потому что могли обжечься. Также она очень хорошо помогает при выборе посуды. Она дает знать, какой материал будет наиболее пригодный для приготовления той или иной пищи.

Заключение

Итак, мы познакомились с тепловыми явлениями, которые наиболее часто встречаются на кухне: конвекция, теплопроводность и кипение. Каждое из них выполняет определенную роль на кухне. Так с помощью конвекция жидкость вся равномерно прогревается Кипение сообщает, что пища приготовилась и набрала определенную температуру. С помощью теплопроводности можно дольше сохранять тепло (пример термоса), а также выбрать посуду, в которой при приготовлении пищи будет возможность взять руками посуду и не обжечься. Таким образом, я делаю вывод о том, что на кухне без знаний физики не обойтись.

Читайте также: