Как подобрать вентилятор для вентиляции по расходу и давлению

Обновлено: 17.05.2024

Расчет производительности вентиляции — Калькулятор воздухообмена

Расчет производительности системы приточно-вытяжной вентиляции по СНиП – онлайн-калькулятор воздухообмена по разным типам помещений.

Смежные нормативные документы:

Калькулятор для расчета и подбора компонентов системы вентиляции

Калькулятор позволяет рассчитать основные параметры вентиляционной системы по методике, о которой рассказывается в разделе Расчет систем вентиляции. С его помощью можно определить:

  • Производительность системы, обслуживающей до 4-х помещений.
  • Размеры воздуховодов и воздухораспределительных решеток.
  • Сопротивление воздухопроводной сети.
  • Мощность калорифера и ориентировочные затраты на электроэнергию (при использовании электрического калорифера).

Если нужно подобрать модель с увлажнением, охлаждением или рекуперацией – воспользуйтесь калькулятором на сайте Breezart.

Пример расчета, расположенный ниже, поможет разобраться, как пользоваться калькулятором.

Пример расчета вентиляции с помощью калькулятора

На этом примере мы покажем, как рассчитать приточную вентиляцию для комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:

№ помещения 1 2 3
Наименование помещения Детская Спальня Гостиная
Площадь 17 м² 14 м² 22 м²
Кол-во людей 1 человек
(днем и ночью)
2 человека ночью,
1 человек днем
0 человек ночью,
5 человек днем

Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.

Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.

Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:

Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5* поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.

В нашей системе на всех ответвлениях установлены балансировочные , позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.

Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:

Результаты расчета по помещениям

№ помещения 1 2 3
Наименование помещения Детская Спальня Гостиная
Расход воздуха 95 м³/ч 120 м³/ч 150 м³/ч
Площадь сечения воздуховода 88 см² 111 см² 139 см²
Рекомендуемый диаметр воздуховода Ø 110 мм Ø 125 мм Ø 140 мм
Рекомендуемые размеры решетки 200×100 мм
150×150 мм
200×100 мм
150×150 мм
200×100 мм
150×150 мм

Результаты расчета общих параметров

Тип вентсистемы Обычная VAV
Производительность 365 м³/ч 243 м³/ч
Площадь сечения магистрального воздуховода 253 см² 169 см²
Рекомендуемые размеры магистрального воздуховода 160×160 мм
90×315 мм
125×250 мм
125×140 мм
90×200 мм
140×140 мм
Сопротивление воздухопроводной сети 219 Па 228 Па
Мощность калорифера 5.40 кВт 3.59 кВт
Рекомендуемая приточная установка Breezart 550 Lux
(в конфигурации на 550 м³/ч)
Breezart 550 Lux (VAV)
Максимальная производительность
рекомендованной ПУ
438 м³/ч 433 м³/ч
Мощность электрич. калорифера ПУ 4.8 кВт 4.8 кВт
Среднемесячные затраты на электроэнергию 2698 рублей 1619 рублей

Расчет воздухопроводной сети

  • Для каждого помещения (подраздел 1.2) рассчитывается производительность, определяется сечение воздуховода и подбирается подходящий воздуховод стандартного диаметра. По каталогу Арктос определяются размеры распределительных решеток с заданным уровнем шума (используются данные для серий АМН, АДН, АМР, АДР). Вы можете использовать и другие решетки с такими же размерами — в этом случае возможно незначительное изменение уровня шума и сопротивления сети. В нашем случае решетки для всех помещений оказались одинаковыми, поскольку при уровне шума в 25 дБ(А) допустимый расход воздуха через них составляет 180 м³/ч (решеток меньшего размера в этих сериях нет).
  • Сумма расходов воздуха по всем трем помещениям дает нам общую производительность системы (подраздел 1.3). При использовании производительность системы будет на треть ниже за счет раздельной регулировки расхода воздуха в каждом помещении. Далее рассчитывается сечение магистрального воздуховода (в правой колонке — для VAV системы) и подбираются подходящие по размерам воздуховоды прямоугольного сечения (обычно дается несколько вариантов с разным соотношением размеров сторон). В конце раздела рассчитывается сопротивление воздухопроводной сети, которое получилось весьма большим — это связано с использованием в вентсистеме фильтра тонкой очистки, который имеет высокое сопротивление.
  • Мы получили все необходимые данные для комплектации воздухораспределительной сети, за исключением размера магистрального воздуховода между ответвлениями 1 и 3 (в калькуляторе этот параметр не рассчитывается, поскольку конфигурация сети заранее неизвестна). Однако площадь сечение этого участка можно легко рассчитать вручную: из площади сечения магистрального воздуховода нужно вычесть площадь сечения ответвления №3. Получив площадь сечения воздуховода, его размер можно определить по таблице.

Расчет мощности калорифера и выбор приточной установки

Далее по производительности системы и разности температур воздуха определяется максимальная мощность калорифера. После этого на основании всех полученных данных подбирается приточная установка.

В результатах расчета помимо требуемой производительности системы вентиляции указывается максимальная производительность ПУ при заданном сопротивлении сети. Если эта производительность оказывается заметно выше требуемого значения, можно воспользоваться возможностью программного ограничения максимальной производительности, которая доступна для всех вентустановок Breezart. Для максимальная производительность указывается для справки, поскольку регулировка ее производительности производится автоматически в процессе работы системы.

Расчет стоимости эксплуатации

В этом разделе рассчитывается стоимость электроэнергии, затрачиваемой на нагрев воздуха в холодный период года. Затраты для зависят от ее конфигурации и режима работы, поэтому принимаются равными среднему значению: 60% от затрат обычной системы вентиляции. В нашем случае можно сэкономить снижая расход воздуха ночью в гостиной, а днем — в спальне.

Расчет вентиляции с помощью онлайн калькулятора

Рейтинг ↑ не забываем

При помощи данных калькуляторов, Вы сможете подобрать: вентилятор на вытяжной зонт пристенного типа; островного; потери даления в воздуховоде; кратность воздухообмена для помещений и.т. д.

По какой формуле происходит расчёт L (m³/ч) = S (m²) × V (m/c) × 3600

Для определения п роизводительности вентилятора (м³/ч), необходимо ввести значения в графы сторона А — В и скорость потока на срезе зонта

Формула для круглого вытяжного зонта L (m³/ч) = πR² × V (m/c) × 3600

Для определения п роизводительности вентилятора (м³/ч), необходимо ввести значения в графы диаметр и скорость потока на срезе зонта

Формула для расчёта Pтр = ((0,15*l/d) * (v*v*1,2)/2)*9,8

Формула для расчёта Pтр = ((0,15*l/(2*a*b/(a+b))) * (v*v*1,2)/2)*9,8

Формула расчёта вентиляции по кратности L = n*V

Расчёт кратности воздухообмена в помещений любых типов

Выберите из выпадающегося меню Ваш вариант и введите объём помещения и получите нужный результат

Диаметр воздуховода для круглого сечения

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3

Формула по которой происходит расчёт

D = 2000*√(L/(3600*3,14*V))
D — диаметр (мм)
L — воздухообмен помещения (м³/ч)
V — скорость воздуха (м/с)

Диаметр воздуховода для квадратного сечения

Формула по которой происходит расчёт

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3

Полезные материалы

Проектирование систем кондиционирования

Кондиционеры с функцией Wi-Fi

Монтаж систем чиллер-фанкойл

Mitsubishi MSZ-FH25 VE/ MUZ-FH25 VE — 104000р

Оконный кондиционер

Мы занимаемся установкой систем вентиляции и кондиционирования в Подольске с 2009 года, затем география наших услуг расширилась до городов Щербинка, Чехов, Серпухов, Домодедово.

Сейчас наши специалисты выезжают в города по всей Московской области. Квалификация подтверждается ежегодно, путём прохождения аттестации в климатических компаниях мировых лидеров.

Полученные знания и навыки позволяют нам найти и решить проблему любой сложности.

Наши цены Вас приятно удивят!

Монтаж кондиционера или вентиляционного оборудования можно заказать по телефонам в Подольске, Чехове, Щербинке и других городах Московской области

О Компании

Климатическая техника сегодня – уже не роскошь, а иногда, это даже потребность и необходимость. Чтобы Ваш дом был полон заботы и комфорта, кондиционер – одна из его немногих составляющих.

Меню опросов

Контакты

Адрес: МО, Г.о. Подольск,
Железнодорожная 2б, офис1


WasserWolf


Хотел уточнить, правильно ли я понимаю.

Допустим мы имеем две аэродинамические характеристики вентилятора (зависимость полного давления вентилятора от расхода воздуха и зависимость статического давления вентилятора от расхода воздуха).

Если вентилятор будет работать на нагнетание, то мы при его подборе пользуемся зависимостью полного давления от расхода.

Если же вентилятор будет работать только на всасывание, то мы пользуемся зависимостью статического давления от расхода, т.к. преобразование динамического давления в полезную работу для перемещения воздуха в воздуховоде невозможно при свободном выбросе из вентилятора.


Странная Белка


Мы пользуемся зависимостью, которую нам в каталоге рисуют. И не уходим в дебри аэродинамики, а то каждый объект по несколько лет будем проектировать.


WasserWolf



Андрей 113


Хотел уточнить, правильно ли я понимаю.

Допустим мы имеем две аэродинамические характеристики вентилятора (зависимость полного давления вентилятора от расхода воздуха и зависимость статического давления вентилятора от расхода воздуха).

Если вентилятор будет работать на нагнетание, то мы при его подборе пользуемся зависимостью полного давления от расхода.

Если же вентилятор будет работать только на всасывание, то мы пользуемся зависимостью статического давления от расхода, т.к. преобразование динамического давления в полезную работу для перемещения воздуха в воздуховоде невозможно при свободном выбросе из вентилятора.


А что есть статическое давление вентилятора?
Есть аэродин. хар-ка вентилятора зависимость создаваемого давления от расхода.


Странная Белка



Ну естественно с учетом того, какая характеристика указана - по полному или по статическому давлению. Просто не надо в этот момент думать о "преобразовании динамического давления в полезную работу". Надо думать о своих потерях на сеть и полных потерях давления. И что значит свободный выброс из вентилятора? Без сети?


WasserWolf


А что есть статическое давление вентилятора?
Есть аэродин. хар-ка вентилятора зависимость создаваемого давления от расхода.


Есть зависимость полного давления от расхода, а есть и зависимость статического давления от расхода. Это разные характеристики.


Андрей 113


Есть зависимость полного давления от расхода, а есть и зависимость статического давления от расхода. Это разные характеристики.


По моему термины динамического, статического и полного давления применимы к сетям гидравлическим, аэродинамическим еще каким, но ни как не к вентиляторам. У вентилятора есть аэродинамическая характенистика (зависимисть распологаемого напора и расхода). У вентилятора может быть свободный напор, напор для преодоления внешних аэродинамических сопротивлений. полный=свободный+ потери в установке. Если я неправ, поправьте.


Val_


Забавляет тот факт что большинство проектировщиков повально неправильно подбирают вентиляторы, но как то всё работает

Статическое давление вентилятора - это разность (с учётом знака) статического давления до и после вентилятора.
Динамическое давление вентилятора - Это диамическое давление воздуха в сечении напорного патрубка вентилятора (зависит от скорости)
И полное давление - это как водиться сумма предыдущих двух давлений.
Вы не поверете, но есть даже КПД вентилятора по статическому давлению, и КПД по полному давлению

Теперь про сеть -
Потери давления в сети (те что вы расчитываете при аэродинамическом рассчёте) это потери статического давления. Вентилятор должен своим статическим давлением покрыть ваши потери давления.

Если бы в сети было только статическое давление, то это был бы просто сосуд под давлением, без движения воздуха. В воздуховоде должно быть динамическое давление, возникающее в результате движения воздуха. В начальном патрубке сети у вас есть какая то скорость, зная которую, вы знаете динамическое давление в этом патрубке. А прибавив это динамическое давлени к потреям давления (статике) вы получаете полное давление вашей сети. Вентилятор опять таки должен покрыть своим полным давлением полное давление вашей сети.

Вот тут и возникают большинство ошибок.
Например:
Потери давления сети 500 Па.
Вентилятор А
Статическое давление вентилятора при данном расходе 450 Па.
Полное давление 500 Па
Вентилятор Б
Статическое давление вентилятора при данном расходе 500 Па.
Полное давление 550 Па

Какой вентилятор выберете?
Как правильно заметил WasserWolf - вентилятор подобранный по статическому и динамическому давлению может отличаться на несколько типоразмеров. увы.

Кстати WasserWolf ещё одно дельную вещь сказал - вентилятор,работающий только на всасывание подбираетсятолько на статическое давление. Ибо всё динамическое давление вентилятора будет направлено не на полезную работу, а на бесполезное сотрясание воздуха после вентилятора.


LordN

Lp и перепаду давления
Рв = Рр *((273+t) / 293) * 1010 / Pбap
где P р — расчетное давление вентилятора при рабочих условиях, Па, равное расчетному сопрогивлению вентиляционной сети с оборудованием с надбавкой до 10% на неучтенные потери. При подборе вентиляторов по каталожным данным необходимо, чтобы КПД вентилятора для рабочей точки составлял не менее 0,9 максимального КПД Для данного вентилятора.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВЕНТИЛЯТОРОВ
1). Объемный расход воздуха Объемный расход воздуха вентилятора
L
— величина объема возду­ха
v,
подаваемого вентилятором через некоторую поверхность
S
за еди­ницу времени
L
L = (υ / t) *м3 / c (м 3 /ч).Массовый расход воздуха, создаваемый вентилятором, определяется по формуле: М = ρ*
V*S,
кг/с, где ρ — плотность воздуха, кг/м 3 ;.
V —
скорость потока воздуха, м/с. р * V * S = const 2). Давление Давление (напор) — энергия, которую приобретает единица объема газа, проходящая через вентилятор. На основании этого закона Бернулли выведе­но уравнение:
Рп=Р ст +ρ *(V^2 / 2) ,
где
Р П —
полное давление, Па;
Рст-
статическое давление, Па; ρ — плотность (газа), кг/м 3 ;
V —
средняя скорость газа, м/с;
ρ*(V^2 / 2)
— скоростной напор или динамическое давление, Па.3. Коэффициент полезного действия вентилятора Если каждой единице объема воздуха, прошедшей через вентилятор, сообщается давление ΔР, то полезная мощность воздуха, выходящего из вентилятора, составит:
N n = ΔP*L
Электродвигатель вентилятора потребляет электрическую мощ­ность Nэ. Эта мощность преобразуется в механическую мощность на валу электродвигателя
N B .
Таким образом, полезная мощность вентилятора равна: Nп=ΔP*L = Nэ*ηп*ηп η = Nп / N = (Pv*L) / (1000*N) Полный КПД вентилятора представляет собой от­ношение полезной мощности
Nn,
кВт, к мощности на валу вентилятора N, кВт 4). Частота вращения вентилятора

В документации и на заводской табличке электродвигателя указы­вается номинальная частота вращения. Однако в зависимости от соп­ротивления сети и расхода воздуха, подаваемого вентилятором, часто­та может несколько изменяться. 5). Уровень звукового давления

Различают уровни звукового давления в воздуховоде со стороны всасывания, со стороны нагнетания и уровни звукового давления, пе­редаваемые в окружающую среду.

Классификация вентиляторов:

Применяемые в настоящее время вентиляторы разделяются по принципу действия на центробежные и осевые. В системах вентиля­ции и кондиционирования воздуха большое распространение полу­чили первые. Осевые вентиляторы используются главным образом в тех случаях, когда надо перемещать воздух без сети воздуховодов.

У меня лакокрасочный участок. Подскажите, какой вентилятор мне поставить?

— иногда с таким вопросом к нам обращаются клиенты. В этом случае наш стандартный ответ: если нет проекта вентиляционной системы — тогда вам не в торговую, а в проектную организацию. Все, что мы можем еще посоветовать в такой ситуации — это подбор вентилятора по простейшей методике. Итак, простая методика подбора вентилятора приведена ниже.

При подборе вентилятора нужно:

1. Определить объем вентилируемого помещения

2. Определить кратность воздухообмена.

КРАТНОСТЬ ВОЗДУХООБМЕНА

— отношение объема воздуха, подаваемого в помещение или удаляемого из него в течение часа, к объему помещения. Или другими словами: сколько раз в течении часа должен меняться воздух в помещении.

Кратность воздухообмена определяется СНИП. Ниже приводим таблицу кратности воздухообмена (нажмите справа красный переключатель чтобы таблицу развернуть на экран)

Таблица кратности воздухообмена для помещений

3. Объем помещения умножить на кратность и получить расчетную производительность вентилятора.

4. По производительности подобрать модель вентилятора. Если вентилятор выбрасывает воздух через стенку прямо на улицу, или короткий воздуховод (единицы метров) –наиболее вероятно, что подойдет или осевой вентилятор или вентилятор низкого давления (ВЦ 4-75). Если есть длинный воздуховод (десятки метров) — может надо будет использовать вентилятор среднего давление (ВЦ 14-46), или даже высокого давления. А это уже к проектировщикам или же самому определить экспериментально на свой страх и риск.

5. Если воздух из помещения вентилятор вытягивает – то надо решить, каким путем воздух будет в это помещение поступать? Надо продумать и обеспечить приток воздуха в том же объеме, что и отток (приток будет либо через щели в стенах, окнах и дверях либо на приток поставить такой же вентилятор)

6. Если в выбрасываемом вентилятором воздухе кроме воздуха есть что-то еще — тогда этот факт надо обязательно учесть. Например, если есть пары растворителей, лаков, красок – тогда вентилятор должен быть взрывобезопасный (с разнородными вставками или алюминиевый). Если в воздухе есть пыль, волокнистые вещества, опилки — тогда вентилятор должен быть пыльевой (например типа ВЦП 5-45). Если есть агрессивные вещества (пары кислот, например) — тогда из нержавеющей стали или пластмассы.

Перед расчетом параметров вентилятора необходимо выполнить предварительную компоновку ОУ: расположить рассчитанное количество радиаторов по сторонам шахты и выбрать число радиаторов.

Расчет вентилятора производят с целью определения диаметра колеса, максимальной частоты вращения и затрат мощности на его привод, при которых обеспечивается необходимая производительность и напор. Производительность и напор вентиляторного колеса полностью зависят от геометрических размеров и конструкции шахты ОУ. Так напор Н, создаваемый вентилятором, должен быть достаточным для преодоления аэродинамического сопротивления воздушного тракта, а производительность вентилятора Q должна быть равна расходу воздуха через радиаторы ОУ. Исходя из вышесказанного, приводятся формулы для определения указанных величин:

H = h Ж + h Р + h Ш + h D , (33)

где H – напор, создаваемый вентилятором, Н/ м 2 ; h Р – сопротивление жалюзи ОУ, Н/м 2 ; h С – сопротивление радиаторов, Н/ м 2 ;h – сопротивление шахты ОУ, Н/ м 2 ; h – динамические потери за вентилятором, Н/ м 2 .

Напор, создаваемый вентилятором при двухрядном расположении радиаторов, определяется как

Н = 0,1 h P + h P + 0,4 h P + 0,45h P = 1,95 h P . (34)

При однорядном расположении радиаторов

Н = 0,1 h P + h P + 0,8 h P + 0,9h P = 2,8 h P (35)

Значения h P определяются по формулам (16) и (17). Далее рассчитывается производительность вентилятора, которая равна расходу воздуха, проходящего через радиаторы, м 3 / с,

Q B = G B З / g B , (36)

где G B – расход воздуха, кг/ с, определенный по формуле (27); g ВЗ – удельная масса воздуха перед вентилятором, кг/ м 3 ,

g ВЗ = 10 5 / , (37)

где R B = 287 — газовая постоянная воздуха (работа, совершаемая 1 кг газа, если его температура повышается на 1 о С, при неизменном давлении), 287 Дж/ кг К.

Для обеспечения максимального КПД (h B) вентилятора необходимо определить угол установки (наклона) его лопастей. Эта задача решается с помощью аэродинамических характеристик вентилятора:

`Н = f(`Q) и h B = f(`Q),

где `Н – коэффициент напора, `Q – коэффициент производительности.

На рис. 4 представлены аэродинамические характеристики осевого вентилятора типа УМ – 2М.

Задаваясь несколькими значениями частоты вращения вентиляторного колеса n i определяют значения окружной скорости w I , м/с, по величине которой рассчитывают значения `Н i и `Q i

w I = p D B n i / 60 £ 120 м/ с, (38)

`H i = g H / 10g B w i 2 , (39)

`Q i = Q B / F B w i , (40)

где Н – напор, Н/ м 2 ; Q B – производительность,м 3 / час; F B – площадь вентиляторного колеса по внешнему диаметру, м 2 ,

F B = p D B 2 / 4. (41)

По найденным значениям `Н i и `Q i на аэродинамических характеристиках строится характеристика сети (рис. 4) и находятся точки пересечения ее с кривыми Н = f(`Q): точки 1, 2. 3, 4. Найденные точки пересечения переносятся на кривые h B = f(`Q), построенные для различных углов установки лопастей (точки 1 1 , 2 1 , 3 1 , 4 1). По максимальной ординате определяется угол установки лопастей, при котором вентилятор будет работать с максимальным КПД.

Рис. 4. Аэродинамические характеристики

вентилятора УК – 2М

После этого определяются параметры вентиляторного колеса: диаметр D B , м, максимальная частота вращения, n B , 1/c, и затраты мощности на его привод, N B , кВт. Для этого сначала определяют значения `Н и `Q, соответствующие максимальному КПД, для чего точка, на кривой h B = f(`Q), по которой был определен оптимальный угол установки лопастей, переносится на зависимость Н = f(`Q),a с нее – на ординату и абсциссу. Затем по нижеприведенным формулам определяются значения измерителя напора К Н, м 3 /с и измерителя производительности К Q , м 3 /с.

  • Общее понятие о конструкции агрегата и его назначении
  • Описание вычислений параметров воздуходувной машины
  • Определение мощности

После того как сеть воздуховодов спроектирована и просчитана, наступает время подобрать под эту систему вентиляционную установку для подачи и обработки воздуха. Сердцем вентиляционной системы является вентилятор, приводящий в движение воздушные массы и призванный обеспечить необходимый расход и давление в сети. В этом качестве часто выступает агрегат осевого типа. Чтобы необходимые параметры были выдержаны, вначале следует произвести расчет осевого вентилятора.

Осевой вентилятор используется в системах воздуховодов для перемещения больших масс воздуха.

Общие сведения

Вытяжная вентиляция на кухне

Но внешняя красота – это не самое главное. Основная задача этого прибора – избавить помещение кухни от запахов, гари, копоти и жира, которые появляются во время приготовления пищи. Вытяжная вентиляция удаляет испарения, исходящие от разного рода нагревательных приборов. Она предотвращает появление грязного налета на потолке и на поверхности стен. Это позволяет выполнять косметический ремонт гораздо реже, что сэкономит значительную сумму денег. Меньше времени понадобится и на проведение генеральной уборки.

Вернуться к оглавлению

На графике


Индивидуальный график характеристик вентилятора Аксипал

1 производительность Q,м3/час 2 полное давление Pv, Па 3 сплошными синими линиями показаны кривые характеристик работы вентилятора в зависимости от угла установки лопаток рабочего колеса с точностью до одного градуса 4 синей пунктирной линией показано динамическое давление без диффузора 5 синей пунктирной линией показано динамическое давление с диффузором 6 угол установки лопаток рабочего колеса 7 максимальное значение угла установки лопаток рабочего колеса 8 сплошными зелёными линиями показаны кривые потребляемой вентилятором мощности, кВт 9 зелёными пунктирными линиями показаны уровни среднего звукового давления, дБ(А)

Подбор вентилятора начинают с определения его номера (размера) и синхронной частоты вращения. По заданным аэродинамическим характеристикам (производительноcти Q и полному давлению Pv) на сводных графиках определяют размер (номер) вентилятора и синхронную частоту вращения рабочего колеса вентилятора. При этом может учитываться оптимальный размер воздуховодов или проёмов в стенах или перекрытиях. На соответствующем индивидуальном графике характеристик в точке пересечения координат производительности и полного давления (рабочей точке) находят кривую характеристик вентилятора для соответствующего угла установки лопаток рабочего колеса. Данные кривые проведены с интервалом установки угла лопаток в один градус. Рабочая точка одновременно показывает потребляемую вентилятором мощность (в случае несовпадения рабочей точки и кривой потребляемой мощности необходимо провести интерполяцию) и средний уровень звукового давления. Динамическое давление и динамическое давление с присоединённым диффузором находят на пересечении соответствующих наклонных прямых с вертикалью, проведённой от производительности Q (значения считывают на шкале полного давления Pv). Вентиляторы Аксипал по заказу потребителя могут оснащаться электродвигателями как отечественного, так и зарубежного производства. В случае если фактические параметры эксплуатации вентилятора (температура, влажность, абсолютное атмосферное давление, плотность воздуха или фактические обороты вращения электродвигателя) отличаются от параметров, при которых составлены графики аэродинамических характеристик следует уточнить фактические аэродинамические характеристики вентилятора и потребляемую мощность по следующим формулам (ГОСТ 10616-90) и основным законам вентиляции: Q=Q0•n/n0 (1)

Pv = Pv0 • (n/n0 )2 (2)

где Q – фактическая производительность, м3/час или м3/с;

Pv – фактическое полное давление, Па; N – фактическая потребляемая мощность, кВт;

Кроме этого при расчете учитывают, какой запас по расходу воздуха и давлению необходимо учесть для преодоления всех местных сопротивлений от фильтров, нагревателей, диффузоров, клапанов и протяженности воздуховодов.

Знайте, что при добавлении аксессуаров к системе вентиляции, возрастает давление. Этот момент – сопротивление воздуха, следует учитывать, когда просчитываете производительность.

Такой расчет лучше всего доверить специалистам, которые имеют квалификацию для проектирования вентиляционных систем. Для таких расчетов они часто пользуются специальным компьютерным обеспечением для подбора и расчета систем вентиляции.

Фактор 5. Почему важно учитывать скорость и объем воздухообмена

В некоторых помещениях должен быть хороший воздухообмен. Для того, чтобы рассчитать эту характеристику просто: мощность вентилятора разделите на объем помещения.

Второй момент – скорость воздушного потока. Наиболее хороший вариант это модель со скоростью не менее 11 м/с. Однако при этом эта цифра не должна превышать 14 м/с. Если цифры колеблются в диапазоне до 11 и больше 14, то при меньших числах работа будет менее эффективной, при больших – не исключено появление шума.


Фактор 6. Конструкция канального вентилятора

Конструкции вентиляторов для канального монтажа очень разнообразны. Они также комплектуются соответствующими вспомогательными аксессуарами.

Канальные вентиляторы могут отличаться по присоединительному диаметру (100 … 500 мм) или размерам прямоугольного /квадратного канала.

  • Могут иметь металлический или пластиковый корпус, или корпус из современных композитных материалов.
  • Убирая боковые стенки у модели с кубическим корпусом, можно менять направление потока воздуха.
  • Канальники отличаются способами и ориентацией при установке, а также возможностями обслуживания.
  • У них различные исполнения рабочего колеса (крыльчатки) – с загнутыми вперед или назад лопатками, с диагональными лопатками, с металлическими или пластиковыми рабочими колесами.
  • Есть модели с асинхронным (АС) и EC-двигателями, шумоизолированные модели.
  • Есть исполнения повышенной производительности – сдвоенные вентиляторы.
  • Выпускаются также канальные вентиляторы во взрывозащищенном исполнении для монтажа с круглыми воздуховодами.

Очень важно учитывать диаметр места подключения и канального вентилятора. Диаметр последнего считается по следующей формуле:

D = 1000*√(4*S/π) ,

Полученное число сопоставляют с заводскими стандартами, допущенными по ГОСТ, и выбирают наиболее близкие по диаметру изделия.

Примеры разнообразных исполнений канальных вентиляторов и дополнительных аксессуаров для установки с круглыми воздуховодами от известного шведского бренда Systemair.


Фактор 7. Потребляемая мощность

Не менее важным фактором при выборе вентилятора канальной установки является потребляемая мощность.

В свете усиливающихся требований последних лет по энергосбережению, для установки рекомендуются вентиляторы, соответствующие последним нормам (директивам ErP) по энергопотреблению и энергоэффективности. Намного выгоднее использовать вентиляторы с EC-двигателями, поскольку их эксплуатация сокращает потребление энергии более чем на 50%!

Сравним энергозатраты и выбросы CO2 для канального вентилятора с АС-двигателем и с EC-двигателем. Экономия и польза для экологии очевидны.


Ведущие производители канальных вентиляторов

Вентиляторы для канального монтажа отличаются огромным разнообразием моделей и широким диапазоном производительности. Рынок насыщен, и постоянно пополняется предложениями новых моделей от производителей для различных категорий заказчиков.

Среди ведущих и завоевавших заслуженный авторитет производителей можно выделить канальные вентиляторы следующих брендов: Ruck, Systemair, Maico, Rosenberg, Вентс (больше о продукции этой компании написано в этой статье), Salda, Aerostar, Soler&Palau, Lessar и другие.

На нашем сайте представлены модели канальных вентиляторов различных ценовых категорий отечественного и зарубежного производства. Среди их многообразия можно выбрать то, что необходимо для конкретного применения. В описаниях приводятся технические особенности и характеристики, а также способы монтажа и обслуживания таких вентиляторов.

Как подобрать вытяжной вентилятор по объему помещения?

В наше время нельзя представить свою жизнь без вентиляционных систем. Они установлены в производственных зданиях, в офисах, в учебных заведениях, в магазинах, в квартирах. Работа этих систем немыслима без применения вытяжных вентиляторов различной мощности. Широко распространенным элементом квартирной вентиляции является кухонная вытяжка. Она может иметь различные формы, размеры, дизайн.

От расчета мощности вентилятора кухонной вытяжки будет зависеть количество очищенного воздуха в помещении.

Вытяжная вентиляция на кухне

Но внешняя красота – это не самое главное. Основная задача этого прибора – избавить помещение кухни от запахов, гари, копоти и жира, которые появляются во время приготовления пищи. Вытяжная вентиляция удаляет испарения, исходящие от разного рода нагревательных приборов. Она предотвращает появление грязного налета на потолке и на поверхности стен. Это позволяет выполнять косметический ремонт гораздо реже, что сэкономит значительную сумму денег. Меньше времени понадобится и на проведение генеральной уборки.

Как проверить, работает ли вентиляция

В старых домах часто нарушается работа вентиляционных шахт: со временем они засоряются и перестают выполнять свои функции. Поэтому сначала нужно проверить состояние вентканала. Если он забит чем-либо, снизится эффективность не только естественной, но и принудительной вентиляции.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Дизайн ванной в классическом стиле: примеры и фото

Узнать, в рабочем ли состоянии вентиляция в ванной комнате, просто:

  1. В квартире приоткрывают форточки и дверь в ванную комнату.
  2. Берут марлю, салфетку или носовой платок и прикладывают к отверстию вентиляционного канала.
  3. При качественной работе воздуховода ткань или бумага будет сама держаться возле отверстия. Чем плотнее прижимается платок или салфетка, тем лучше тяга в шахте. Если они не держатся, падают, значит, что-то с каналом не так, нужно выяснять причину, почему вентиляция не работает.

Можно провести и другой тест, он также весьма прост и показателен:

  • также приоткрывают форточки и двери;
  • зажигают свечу и подносят к выходу шахты;
  • если огонек наклоняется в сторону отверстия, то тяга есть, если он горит, не шелохнувшись, то воздух стоит на месте.

Затем опыты следует повторить с закрытыми форточками и дверями. Если и в этом случае огонек отклоняется или листок прилипает к отверстию, значит, тяга хорошая, сильная. В этом случае вряд ли возникнет необходимость в установке принудительной вентиляции. Если тяга отсутствует, то не помешает установить дополнительный вентилятор.

Основная причина отсутствия тяги – засорение канала. В этом случае необходимо прочистить шахту, при необходимости – обратиться в управляющую компанию. Бывает, что жильцы верхних этажей замуровывают вентиляцию, что также мешает циркуляции воздуха. Этот вопрос также придется решать через УК.

Расчет мощности вентилятора

Чтобы рассчитать мощность вентилятора, нужно выполнить следующие действия:

Пример расчета производительности вентилятора вытяжки для кухни.

  1. С помощью рулетки измерить размеры кухни и определить ее объем в метрах. Для этого длину нужно умножить на ширину и высоту. В документах БТИ указана площадь помещений. Пример: площадь кухонного помещения равна 10 м². Высота от пола до потолка – 3 м. Умножаем площадь на высоту и получаем 30 м³. Таков объем кухни.
  2. Далее рассчитывается величина, характеризующая воздухообмен. Для этого нужно умножить объем кухни на количество полных обновлений воздуха за час. Строительные нормы и правила (СНиП) предусматривают кратность воздухообмена, равную 10-12. Таким образом, чтобы рассчитать мощность вытяжной системы нужно 30 м³ умножить на 12. В итоге получается цифра 360 м³/час. Столько воздуха должно обновляться каждый час.
  3. Для осуществления обмена в таком объеме нужен вентилятор с мощностью 400-800 м³/час. Но стандартные вентиляционные каналы способны пропустить только около 180 м³. Поэтому вентилятор тут не очень поможет.
  4. В этом случае поможет рециркуляционная система вытяжки, которая пропускает воздух через фильтры и отправляет его обратно в помещение. На преодоление сопротивления фильтров тоже требуется мощность. Поэтому к расчетной цифре следует добавить 40%. Получится 560-1120 м³. Такова должна быть мощность вентилятора вытяжки на кухне размером 30 м³.
  5. В некоторых случаях можно обойтись и без вентиляционного канала. Для этого вытяжной вентилятор устанавливается в специально оборудованном проеме в стене, в потолке или на стыке потолка и стены. Такой монтаж допускает применение менее мощного вентилятора.

Мощность вытяжки для разных помещений.
Это лишь простейший расчет необходимой мощности вытяжного вентилятора. Если кухня не имеет дверей, то нужно учитывать еще и объем смежного помещения. Итак, формула расчета мощности вентилятора для общих случаев: ширина помещения х длина х высота х кратность обмена = искомая величина. Высчитать объем помещения можно без особых проблем. Достаточно измерить длину, ширину и высоту и перемножить их.

Калькулятор для расчета и подбора компонентов системы вентиляции

Калькулятор позволяет рассчитать основные параметры вентиляционной системы по методике, о которой рассказывается в разделе Расчет систем вентиляции. С его помощью можно определить:

  • Производительность системы, обслуживающей до 4-х помещений.
  • Размеры воздуховодов и воздухораспределительных решеток.
  • Сопротивление воздухопроводной сети.
  • Мощность калорифера и ориентировочные затраты на электроэнергию (при использовании электрического калорифера).

Если нужно подобрать модель с увлажнением, охлаждением или рекуперацией – воспользуйтесь калькулятором на сайте Breezart.

Пример расчета, расположенный ниже, поможет разобраться, как пользоваться калькулятором.

Как узнать производительность вентилятора

Расчет вентилятора, а точнее его производительности также сопряжен с:

  • диаметром лопастей;
  • уровнем шума;
  • полным давлением.

Необходимой нормой смены, рекомендованной СНиП, является диапазон от 10 до 12 раз за час. Умножая имеющийся объем помещения на любое значение из данного диапазона, можно получить необходимую производительность в отдельной комнате. Суммировав полученное значение с расчетами площадей по всем комнатам дома можно узнать нужную производительность для всей жилой площади.

В практике редко когда реализуются нормы, требуемые расчетами, поэтому в реальных условиях все несколько иначе, что и касается хорошего притока воздуха. Так, для минимально установленной нормы воздухообмена в помещении достаточно открыть окно либо положиться на создаваемую в вентиляционном канале тягу.

Вытяжной вентилятор для кухни

Большую роль играет установка осевого вентилятора, представляющего собой лопастную воздуходувную машину, передающую в виде кинетической и потенциальной энергии механическую энергию от вращения лопастей, находящихся на рабочем колесе. Расчет воздухообмена осевых вентиляторов проводят с учетом КПД (коэффициента полезного действия), аэродинамических характеристик прибора и производительности агрегата. Данное значение также может быть указано в прилагающейся к аппарату инструкции.

Пример расчета вентиляции с помощью калькулятора

На этом примере мы покажем, как рассчитать приточную вентиляцию для комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:

№ помещения123
Наименование помещенияДетскаяСпальняГостиная
Площадь17 м²14 м²22 м²
Кол-во людей1 человек (днем и ночью)2 человека ночью, 1 человек днем0 человек ночью, 5 человек днем

Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.

Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.

Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:


Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5* поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.

В нашей системе на всех ответвлениях установлены балансировочные , позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.

Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:

Кратность смены воздуха

Кратность для помещений разного типа определяется так:

Таблица для расчета минимальной производительности вытяжки относительно объема кухни.
Наибольший показатель кратности выбирают для использования в помещениях со множеством людей, с высокой влажностью и температурой, с большим количеством пыли и сильными запахами. На кухне с электрической варочной поверхностью можно выбирать меньший показатель, с газовой плитой – больший. Связано это с тем, что газ при включенной плите выделяет продукты горения. Вентилятор, выбранный с учетом вышеперечисленных данных, можно смонтировать в стене, окне, потолке помещения.

ДАВЛЕНИЕ И СЕЧЕНИЕ

На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

Читайте также: