Как рассчитать скорость вентилятора

Обновлено: 20.05.2024

Немного теории

Теплообмен в радиаторах систем охлаждения

В основе расчетов систем охлаждения лежит формула теплопередачи

где ΔQ – количество тепла, передаваемое телу;
m – масса тела;
ΔT – разница температур;
C – удельная теплоемкость.

Из приведенной формулы можно сделать важные выводы. Если ΔQ и С – величины постоянные, то чем больше ΔT , тем меньше m. И еще: количество тепла ΔQ, которое может быть передано от одного тела другому, прямо пропорционально разнице температур этих двух тел ΔT. Относительно теплообмена в радиаторе системы охлаждения это означает: чем больше разница температур охлаждающей жидкости и окружающего воздуха ΔT (Tж–Tв), тем меньший поток воздуха F, кг/с, требуется для охлаждения. Эта зависимость представлена на рис. 1. Из графика видно: когда температура окружающего воздуха приближается к температуре охлаждающей жидкости, т. е. ΔT уменьшается почти до нуля, требуемый поток воздуха стремительно увеличивается.

Этот и приведенные ниже графики построены на основе реальных испытаний.

Рис. 1. Зависимость величины потока воздуха F от разницы температур ΔT


Энергия, необходимая для создания воздушного потока заданной величины

Теперь рассмотрим зависимость энергопотребления привода вентилятора от величины воздушного потока и его скорости.

Как известно из классической механики, количество энергии, необходимой для приведения тела в движение, пропорционально скорости тела в квадрате:

Применительно к системе охлаждения из этого уравнения следует: чтобы увеличить поток воздуха, проходящий через радиатор, необходимо увеличить скорость потока, если эффективная площадь радиатора остается неизменной.

где Е1 – энергия, затрачиваемая для создания существующего воздушного потока;
Е2 – энергия, необходимая для создания будущего воздушного потока;
F1 – величина существующего воздушного потока;
F2 – величина необходимого воздушного потока.

Из этого уравнения можно сделать важный вывод: энергия, необходимая для увеличения воздушного потока, пропорциональна отношению новой и старой величин потока в третьей степени. То есть, чтобы увеличить поток воздуха через радиатор в 2 раза, надо увеличить количество энергии в 8 раз (даже без учета возрастания аэродинамического сопротивления радиатора).

На рис. 2 изображена относительная зависимость между мощностью, потребляемой вентилятором, и величиной воздушного потока.

Рис. 2. Относительная зависимость потребляемой вентилятором мощности Е от величины воздушного потока F


Принципы разработки систем охлаждения

Проектирование системы охлаждения обычно начинают с выбора максимальной рабочей температуры, т. е. максимальной температуры окружающего воздуха, при которой система охлаждения способна поддерживать температуру охлаждающей жидкости двигателя на заданном уровне.

После выбора максимальной рабочей температуры можно определить расчетный перепад температур ΔT в системе и величину необходимого воздушного потока. Чем выше выбранная максимальная рабочая температура, тем больше величина необходимого воздушного потока.

Проще говоря, если мы рассчитываем систему охлаждения для работы в средней полосе, взяв за максимум температуру окружающего воздуха +35 °С, нам потребуется менее мощный вентилятор, чем в случае, когда система охлаждения будет рассчитана на работу при +50 °С.

Для создания оптимальной по характеристикам системы охлаждения следует учитывать факторы, перечисленные далее.

Как правильно выбрать максимальную рабочую температуру

Если выбрать слишком низкую максимальную рабочую температуру, машина будет перегреваться при высоких температурах окружающего воздуха, но если выбрать чрезмерно высокую, заложив в конструкцию системы охлаждения слишком большой запас производительности, система будет потреблять слишком большую мощность, а это приведет к перерасходу топлива и ухудшению экономичности машины. Поэтому очень важно выбрать оптимальное значение максимальной рабочей температуры.

Рис. 3. Относительная зависимость величины воздушного потока F от температуры окружающего воздуха Т

На рис. 4 представлена зависимость мощности, потребляемой вентилятором, от температуры окружающего воздуха: мощность быстро падает с понижением температуры. Если температура окружающего воздуха опускается всего на 17 °С ниже максимальной рабочей температуры системы охлаждения, потребляемая мощность уменьшается более чем на 50%.

Рис. 4. Относительная зависимость величины воздушного потока F от температуры окружающего воздуха Т


Свести к минимуму нагрузку на систему охлаждения

Следует выявить и исключить все паразитные нагрузки на двигатель, которые увеличивают его теплоотдачу и нагрузку на систему охлаждения. Такие паразитные нагрузки обычно появляются из-за нерациональных конструкторских решений.

Сравним: ременный привод вентилятора обычно имеет к.п.д. 93–98% и не увеличивает нагрузку на систему охлаждения.


Выбор диаметра вентилятора

Увеличивая диаметр крыльчатки вентилятора, можно увеличить площадь сечения воздушного потока, за счет чего можно уменьшить его скорость. Поскольку площадь круга изменяется пропорционально величине диаметра в квадрате, скорость воздушного потока изменяется пропорционально квадрату диаметра вентилятора.

Как установлено ранее, потребляемая вентилятором мощность изменяется пропорционально квадрату скорости воздушного потока. Таким образом, мощность, потребляемая вентилятором, изменяется обратно пропорционально изменению диаметра в четвертой степени:

где Е1 – мощность, потребляемая существующим вентилятором;
Е2 – мощность, потребляемая новым вентилятором;
Ø1 – диаметр существующего вентилятора;
Ø2 – диаметр нового вентилятора.

Из уравнения видно, что при увеличении диаметра вентилятора на 10% (и соответственно площади радиатора) потребляемая вентилятором мощность снижается на 32% при сохранении прежней величины воздушного потока. Поэтому выгодно использовать радиатор и вентилятор наибольшего размера, которые можно разместить в подкапотном пространстве машины.


Системы с регулируемой величиной воздушного потока

Оптимальное решение. Системы охлаждения с регулируемой величиной воздушного потока позволяют обеспечивать высокую максимальную рабочую температуру без чрезмерных паразитных затрат мощности. Два наиболее распространенных способа регулировки величины воздушного потока – изменение частоты вращения или угла поворота лопастей вентилятора. Следует заметить, что уменьшение частоты вращения вентилятора выгодно не только с точки зрения экономии мощности, но и для снижения шума работы.

Вентиляторы охлаждения с поворачивающимися лопастями (изменяемым шагом) позволяют регулировать воздушный поток. Использование таких вентиляторов дает возможность разработчикам систем охлаждения обеспечить требования при экстремально высоких температурах окружающего воздуха и в то же время свести к минимуму потребление мощности на привод.

На рис. 5 представлена зависимость величины воздушного потока, проходящего через радиатор, от статического давления: при увеличении статического давления воздушный поток уменьшается. Чем больше воздуха будет проходить через радиатор, тем большее давление потребуется создать. На графике видно, как изменяется величина воздушного потока при изменении угла поворота лопастей (кривые сдвигаются на графике).

Рис. 5. Зависимость величины воздушного потока F от статического давления P при различных углах поворота лопастей

Испытания показали, что даже при относительно теплой погоде (+27 °С) использование вентилятора с поворачивающимися лопастями позволило снизить потребляемую мощность до 50%.


После того как сеть воздуховодов спроектирована и просчитана, наступает время подобрать под эту систему вентиляционную установку для подачи и обработки воздуха. Сердцем вентиляционной системы является вентилятор, приводящий в движение воздушные массы и призванный обеспечить необходимый расход и давление в сети. В этом качестве часто выступает агрегат осевого типа. Чтобы необходимые параметры были выдержаны, вначале следует произвести расчет осевого вентилятора.

Осевой вентилятор

Осевой вентилятор используется в системах воздуховодов для перемещения больших масс воздуха.

Общее понятие о конструкции агрегата и его назначении

Осевой вентилятор – это лопастная воздуходувная машина, которая передает механическую энергию вращения лопастей рабочего колеса воздушному потоку в виде потенциальной и кинетической энергии, а он затрачивает эту энергию на преодоление всех сопротивлений в системе. Осью рабочего колеса данного типа является ось электродвигателя, она располагается по центру воздушного потока, а плоскость вращения лопастей перпендикулярна ему. Агрегат перемещает воздух вдоль своей оси за счет лопаток, повернутых под углом к плоскости вращения. Крыльчатка и электродвигатель закреплены на одном валу и постоянно находятся внутри воздушного потока. Такая конструкция имеет свои недостатки:

Место установки вентилятора

Место установки вентилятора.

  1. Агрегат не может перемещать воздушные массы с высокой температурой, которые могут повредить электродвигатель. Рекомендуемая максимальная температура – 100° C.
  2. По той же причине не допускается применять этот тип агрегатов для перемещения агрессивных сред или газов. Перемещаемый воздух не должен содержать липких включений или длинных волокон.
  3. В силу своей конструкции осевой вентилятор не может развивать высокое давление, поэтому непригоден к использованию для вентиляционных систем большой сложности и протяженности. Максимальное давление, которое может обеспечить современный агрегат осевого типа, находится в пределах 1000 Па. Однако, существуют специальные шахтные вентиляторы, конструкция привода которых позволяет развивать давление до 2000 Па, но тогда уменьшается максимальная производительность – до 18000 м³/ч.

Достоинства этих машин следующие:

Устройство осевого вентилятора

Устройство осевого вентилятора.

  • вентилятор может обеспечить большой расход воздуха (до 65000 м³/ч);
  • электродвигатель, находясь в потоке, успешно охлаждается;
  • машина не занимает много места, имеет небольшой вес и может быть установлена прямо в канале, что снижает затраты при монтаже.

Все вентиляторы классифицируются по типоразмерам, указывающим на диаметр рабочего колеса машины. Данную классификацию можно увидеть в Таблице 1.

Типоразмер 3 4 5 6 8 10 12 12,5 16 20 25 30 40
Диаметр рабочегоколеса, мм 320 400 500 630 800 1000 1200 1250 1600 2000 2500 3200 4000

Описание вычислений параметров воздуходувной машины

Расчет вентиляционного агрегата любого типа выполняется по индивидуальным аэродинамическим характеристикам, не является исключением и осевой вентилятор. Вот эти характеристики:

Установка осевого вентилятора

Установка осевого вентилятора.

  1. Объемный расход или производительность.
  2. Коэффициент полезного действия.
  3. Мощность, необходимая для привода агрегата.
  4. Действительное давление, развиваемое агрегатом.

Производительность была определена ранее, когда выполнялся расчет самой вентиляционной системы. Вентилятор должен ее обеспечить, поэтому значение расхода воздуха остается неизменным для расчета. Если же температура воздушной среды в рабочей зоне отличается от температуры воздуха, проходящего через вентилятор, то производительность следует пересчитать по формуле:

L = Ln x (273 + t) / (273 + tr), где:

  • Ln – необходимая производительность, м³/ч;
  • t – температура воздуха, проходящего через вентилятор, °C;
  • tr – температура воздуха в рабочей зоне помещения, °C.

Определение мощности

После того как необходимое количество воздуха окончательно определено, нужно выяснить мощность, необходимую для создания расчетного давления при этом расходе. Расчет мощности на валу рабочего колеса производится по формуле:

NB (кВт) = (L x p) / 3600 x 102ɳв x ɳп, здесь:

Технические характеристики осевых вентиляторов

Технические характеристики осевых вентиляторов.

  • L – производительность агрегата в м³ за 1 секунду;
  • p – необходимый напор вентилятора, Па;
  • ɳв – значение КПД, определяется по аэродинамической характеристике;
  • ɳп – значение КПД подшипников агрегата, принимается 0,95-0,98.

Значение установочной мощности электродвигателя отличается от мощности на валу, последняя учитывает только нагрузку в рабочем режиме. При пуске любого электродвигателя происходит скачок силы тока, следовательно, и мощности. Этот пусковой пик должен быть учтен при расчете, поэтому установочная мощность электродвигателя будет:

Ny = K NB, где K – коэффициент запаса на пусковой момент.

Значения коэффициентов запаса при различной мощности на валу отражены в Таблице 2.

Мощность на валу, кВт До 0,5 0,51 – 1,0 1,01 – 2,0 2,01 – 5,0 Свыше 5,0
Коэффициент запаса для осевых вентиляторов 1,2 1,15 1,1 1,05 1,05

Если агрегат устанавливается в помещении, в котором температура воздуха может достигать по разным причинам +40° C, то параметр Ny следует увеличить на 10%, а при +50° C установочная мощность должна быть выше расчетной на 25%. Окончательно этот параметр электродвигателя принимают по каталогу завода-производителя, выбрав ближайшее большее значение к расчетному Ny с просчетом всех запасов. Как правило, воздуходувную машину устанавливают до теплообменника, который нагревает воздух для дальнейшей его подачи в помещения. Тогда электродвигатель будет запускаться и работать на холодном воздухе, что есть более экономично в плане расхода электроэнергии.

Воздуходувные машины разных типоразмеров могут быть укомплектованы электродвигателями различной мощности в зависимости от напора, который требуется получить. Каждая модель агрегата имеет свою аэродинамическую характеристику, которую завод-производитель отражает в своем каталоге в графическом виде. Коэффициент полезного действия – величина переменная для различных условий работы, окончательно ее можно будет выяснить по графической характеристике вентилятора, опираясь на величины производительности, расхода и установочной мощности, вычисленные ранее.

Основная задача расчета и подбора вентилятора – выполнить требования по перемещению необходимого количества воздуха с учетом сопротивления сети воздуховодов, при этом добиться максимального значения КПД агрегата.

Если рабочая точка, определенная на графической характеристике по значениям давления и производительности, указывает на низкий КПД, следует взять вентилятор другого типоразмера.

Еще один параметр, характеризующий воздуходувные машины, называют удельной быстроходностью. Ее величина показывает, какая должна быть скорость вращения рабочего колеса вентилятора при нормальных условиях работы, чтобы переместить 1 м³ воздуха за 1 секунду, при этом развивается напор 10 Па и максимальное значение КПД. Расчет данного параметра выполняется по формуле:

nуд = 5,3 (Q0,5 / p0,75) n.

  • nуд – величина удельной быстроходности, об/мин;
  • Q – объемный расход воздуха, м³ за секунду, Q = L / 3600;
  • p – необходимое давление, полученное в результате расчета, Па;
  • n – скорость вращения рабочего колеса согласно каталогу производителя, об/мин.

Практические расчеты по данной формуле показывают, что осевые вентиляторы большой производительности и малого напора отличаются большей быстроходностью, и наоборот. Например, агрегаты с низким давлением имеют показатель быстроходности более 200 об/мин, а с высоким – от 50 до 100 об/мин.

Немного теории

Теплообмен в радиаторах систем охлаждения

В основе расчетов систем охлаждения лежит формула теплопередачи

где ΔQ – количество тепла, передаваемое телу;
m – масса тела;
ΔT – разница температур;
C – удельная теплоемкость.

Из приведенной формулы можно сделать важные выводы. Если ΔQ и С – величины постоянные, то чем больше ΔT , тем меньше m. И еще: количество тепла ΔQ, которое может быть передано от одного тела другому, прямо пропорционально разнице температур этих двух тел ΔT. Относительно теплообмена в радиаторе системы охлаждения это означает: чем больше разница температур охлаждающей жидкости и окружающего воздуха ΔT (Tж–Tв), тем меньший поток воздуха F, кг/с, требуется для охлаждения. Эта зависимость представлена на рис. 1. Из графика видно: когда температура окружающего воздуха приближается к температуре охлаждающей жидкости, т. е. ΔT уменьшается почти до нуля, требуемый поток воздуха стремительно увеличивается.

Этот и приведенные ниже графики построены на основе реальных испытаний.

Рис. 1. Зависимость величины потока воздуха F от разницы температур ΔT


Энергия, необходимая для создания воздушного потока заданной величины

Теперь рассмотрим зависимость энергопотребления привода вентилятора от величины воздушного потока и его скорости.

Как известно из классической механики, количество энергии, необходимой для приведения тела в движение, пропорционально скорости тела в квадрате:

Применительно к системе охлаждения из этого уравнения следует: чтобы увеличить поток воздуха, проходящий через радиатор, необходимо увеличить скорость потока, если эффективная площадь радиатора остается неизменной.

где Е1 – энергия, затрачиваемая для создания существующего воздушного потока;
Е2 – энергия, необходимая для создания будущего воздушного потока;
F1 – величина существующего воздушного потока;
F2 – величина необходимого воздушного потока.

Из этого уравнения можно сделать важный вывод: энергия, необходимая для увеличения воздушного потока, пропорциональна отношению новой и старой величин потока в третьей степени. То есть, чтобы увеличить поток воздуха через радиатор в 2 раза, надо увеличить количество энергии в 8 раз (даже без учета возрастания аэродинамического сопротивления радиатора).

На рис. 2 изображена относительная зависимость между мощностью, потребляемой вентилятором, и величиной воздушного потока.

Рис. 2. Относительная зависимость потребляемой вентилятором мощности Е от величины воздушного потока F


Принципы разработки систем охлаждения

Проектирование системы охлаждения обычно начинают с выбора максимальной рабочей температуры, т. е. максимальной температуры окружающего воздуха, при которой система охлаждения способна поддерживать температуру охлаждающей жидкости двигателя на заданном уровне.

После выбора максимальной рабочей температуры можно определить расчетный перепад температур ΔT в системе и величину необходимого воздушного потока. Чем выше выбранная максимальная рабочая температура, тем больше величина необходимого воздушного потока.

Проще говоря, если мы рассчитываем систему охлаждения для работы в средней полосе, взяв за максимум температуру окружающего воздуха +35 °С, нам потребуется менее мощный вентилятор, чем в случае, когда система охлаждения будет рассчитана на работу при +50 °С.

Для создания оптимальной по характеристикам системы охлаждения следует учитывать факторы, перечисленные далее.

Как правильно выбрать максимальную рабочую температуру

Если выбрать слишком низкую максимальную рабочую температуру, машина будет перегреваться при высоких температурах окружающего воздуха, но если выбрать чрезмерно высокую, заложив в конструкцию системы охлаждения слишком большой запас производительности, система будет потреблять слишком большую мощность, а это приведет к перерасходу топлива и ухудшению экономичности машины. Поэтому очень важно выбрать оптимальное значение максимальной рабочей температуры.

Рис. 3. Относительная зависимость величины воздушного потока F от температуры окружающего воздуха Т

На рис. 4 представлена зависимость мощности, потребляемой вентилятором, от температуры окружающего воздуха: мощность быстро падает с понижением температуры. Если температура окружающего воздуха опускается всего на 17 °С ниже максимальной рабочей температуры системы охлаждения, потребляемая мощность уменьшается более чем на 50%.

Рис. 4. Относительная зависимость величины воздушного потока F от температуры окружающего воздуха Т


Свести к минимуму нагрузку на систему охлаждения

Следует выявить и исключить все паразитные нагрузки на двигатель, которые увеличивают его теплоотдачу и нагрузку на систему охлаждения. Такие паразитные нагрузки обычно появляются из-за нерациональных конструкторских решений.

Сравним: ременный привод вентилятора обычно имеет к.п.д. 93–98% и не увеличивает нагрузку на систему охлаждения.


Выбор диаметра вентилятора

Увеличивая диаметр крыльчатки вентилятора, можно увеличить площадь сечения воздушного потока, за счет чего можно уменьшить его скорость. Поскольку площадь круга изменяется пропорционально величине диаметра в квадрате, скорость воздушного потока изменяется пропорционально квадрату диаметра вентилятора.

Как установлено ранее, потребляемая вентилятором мощность изменяется пропорционально квадрату скорости воздушного потока. Таким образом, мощность, потребляемая вентилятором, изменяется обратно пропорционально изменению диаметра в четвертой степени:

где Е1 – мощность, потребляемая существующим вентилятором;
Е2 – мощность, потребляемая новым вентилятором;
Ø1 – диаметр существующего вентилятора;
Ø2 – диаметр нового вентилятора.

Из уравнения видно, что при увеличении диаметра вентилятора на 10% (и соответственно площади радиатора) потребляемая вентилятором мощность снижается на 32% при сохранении прежней величины воздушного потока. Поэтому выгодно использовать радиатор и вентилятор наибольшего размера, которые можно разместить в подкапотном пространстве машины.


Системы с регулируемой величиной воздушного потока

Оптимальное решение. Системы охлаждения с регулируемой величиной воздушного потока позволяют обеспечивать высокую максимальную рабочую температуру без чрезмерных паразитных затрат мощности. Два наиболее распространенных способа регулировки величины воздушного потока – изменение частоты вращения или угла поворота лопастей вентилятора. Следует заметить, что уменьшение частоты вращения вентилятора выгодно не только с точки зрения экономии мощности, но и для снижения шума работы.

Вентиляторы охлаждения с поворачивающимися лопастями (изменяемым шагом) позволяют регулировать воздушный поток. Использование таких вентиляторов дает возможность разработчикам систем охлаждения обеспечить требования при экстремально высоких температурах окружающего воздуха и в то же время свести к минимуму потребление мощности на привод.

На рис. 5 представлена зависимость величины воздушного потока, проходящего через радиатор, от статического давления: при увеличении статического давления воздушный поток уменьшается. Чем больше воздуха будет проходить через радиатор, тем большее давление потребуется создать. На графике видно, как изменяется величина воздушного потока при изменении угла поворота лопастей (кривые сдвигаются на графике).

Рис. 5. Зависимость величины воздушного потока F от статического давления P при различных углах поворота лопастей

Испытания показали, что даже при относительно теплой погоде (+27 °С) использование вентилятора с поворачивающимися лопастями позволило снизить потребляемую мощность до 50%.

Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 0
Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 1
Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 2
Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 3
Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 4

Бывает так, что пользователь персонального компьютера обнаруживает, что тот при работе создает много шума. А ведь он только-только купил его. Кулер вроде смазан. То есть нет никаких причин для того, чтобы появился шум, а он есть – и такой навязчивый.

Если при работе ноутбука или системного блока появился шум, то в большинстве случаев виной тому вентилятор. Его обороты должны быть настроены так, чтобы этот узел качественно выполнял работу. Иначе говоря, он должен эффективно охлаждать чипсет или видеокарту. Однако при этом делать это ему нужно не на максимуме возможностей.

Проблема в том, что автоматическая регулировка скорости кулера не может постоянно работать корректно. Тогда пользователи настраивают его параметры вручную. Они снижают или увеличивают количество оборотов, чтобы работа компьютера была более комфортной.

Зачем необходимо изменять скорость кулера

Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 1

Скорость вращения вентилятора – это показатель не случайный. Ведь его устанавливает материнская плата, получающая информацию от BIOS. Соответственно, в BIOS’е установлены определенные настройки. А они регулируют обороты, беря за основу температурные показатели того или иного узла.

Так должно быть. Однако на деле бывает иначе. Интеллектуальная регулировка, к сожалению, неэффективна. И нередко происходит так, что лопасти вращаются на скорости, которая близка к максимальной.

Это побуждает пользователей самому принять меры по снижению скорости вращения кулера на процессоре. Делают это в BIOS или используя сторонние утилиты. Есть и другой вариант, который предполагает хитрые манипуляции с питанием вентилятора. Этот вариант не всем нравится. Практика показывает, что к нему прибегают только самые продвинутые пользователи.

Обращаем внимание, что все методики способны не только снижать, но и увеличивать скорость кулера, если кажется, что ему не под силу эффективное охлаждение.

Упомянем еще про одну причину, из-за по которой может появится необходимость разогнать кулер. Такое необходимо, если принудительно повышаешь тактовую частоту процессора.

ВАЖНО! Есть немало геймеров, которые считают нужным разогнать чипсет. Так они получают большую производительность. Как следствие повышается TDP, то есть показатель выделения тепла. Значит, если разгоняешь процессор, то должен разгонять и кулер.

Регулировать обороты кулера полезно. Ведь данная процедура может привести к уменьшению шума при работе или к тому, что станет лучше качество охлаждения.

Мы уже говорили о том, что скорость вращения устанавливает материнская плата вместе с БИОС. Если так, то становится очевидным, что нужно изменить настройки БИОСа. И тогда можно будет управлять кулером.

Как действовать в BIOS

Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 2

Первым делом нужно войти в BIOS. Во многих случаях на ноутбуке, когда идет загрузка, нужно нажать кнопку Del или одну из кнопок F. Нередко при загрузке мелькает черный экран, на котором белые надписи. Нужную кнопку можно обнаружить в углу.

Затем входим в пункт Advanced. Внимательно смотрим, что там написано. Имейте в виду, что разные версии BIOS могут отличаться названиями режимов. Вот почему мы приводим решения, которые наиболее распространены.

Подчеркнем также, что у BIOS несколько режимов, предназначенных для того, чтобы управлять скоростью. Какой лучше? Вам выбирать. Конечно, с учетом личных потребностей:

- CHA Fan Duty Cycle – скорость кулера настраивается в процентном соотношении (от 60 до 100%).

- Chassis Fan Ratio – режим, предоставляющий возможность настроить работу дополнительного кулера, но при одном условии: внутренняя температура системника не должна превышать заданную. При Auto регулирование скорости осуществляется автоматически. 60-90% — ручная регулировка с учетом максимально возможной.

- CpuFan 2 Tmax задает температуру чипсета. Как только она набрана, кулер разгоняется до максимального уровня. Регулировка – от 55 до 70 градусов.

- CpuFan Start Temperature выставляет температурный минимум, и тогда лопасти начинают вращаться на маленькой скорости.

- CpuFan Duty Cucle – непосредственная регулировка. Благодаря ей обороты вращения повышаются или уменьшаются. Настройка выполняется в процентном соотношении от максимума (60-100%). Имеет и другое название – ManualFanSpeed.

Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 3

- CpuFan Control – интеллектуальный контроль. Обладает способностью уменьшать или повышать обороты кулера на процессоре в зависимости от того, насколько процессор нагрелся. Настройки отсутствуют. Функция отключается и включается.

- CpuFan Ratio – настройка количества оборотов лопастей до того, как нагрелся чипсет. Нагрелся до заданной максимальной температуры. Настройка в процентах – от 20 до 90%. Можно уменьшить скорость кулера, когда он действует слишком громко, но в то же время нет нагрева чипсета.

- Smart FAN Idle Temp – можно установить самые низкие обороты.

- Smart Fan Target аналогична CpuFan Control. Ее можно встретить в платах от бренда MSI. Есть возможность дополнительно задать параметр, начиная с какой температуры процессора, БИОС сам производит регулировку оборотов.

Настроек работы вентилятора в БИОСе очень много. Однако пользоваться ими не слишком полезно. По своему опыту многие знают, что часто работают они некорректно. Также для изменения настроек необходимо каждый раз входить в БИОС и что-то менять. Потом еще производит запуск девайса и делать проверку, насколько изменения эффективны.

А ведь есть более простой вариант: поставить специальный софт и, не зная проблем, настраивать скорость, чтобы сразу видеть результат.

Делать настройку через БИОС нецелесообразно порой и потому, что не всегда вентилятор подключен к материнской плате. Есть такие сборки, которыми удачными не назовешь, которые сделаны так, что связь между платой и кулером отсутствует. То есть производить регулировку его работы в BIOS просто не получится. Понадобятся специальные программы. Самой популярной среди них считается SpeedFan.

ВАЖНО! Обращаем внимание, что для настройки компьютерного кулера на точную работу с использованием сторонних утилит, необходимо отключить автоматическую регулировку в БИОС. В противном случае она станет помехой в работе специального софта.

Использования для настройки скорости SpeedFan

Что надо знать про скорость вращения кулера на ПК или ноутбуке Фото 4

Удобнее всего производить регулировку оборотов кулера процессора в специальных программах. Юзеры с опытом обычно выбирают SpeedFan. За этот софт платить не нужно. Ему нужно минимум места. Работает эффективно. Плохо только, что программа не русифицирована. Впрочем, интерфейс и так понятен.

Программа установлена. Появится окошко с несколькими вкладками. Для изменения скорости вращения кулера не нужно куда-то заходить. Вся информация – в окне под названием Readings.

Загрузку чипсета и ядер показывает строка CPU Usage. Рядом – надпись Automatic fan speed, где можно поставить галочку, чтобы активировать режим автоматической регулировки. Однако в таком случае нет смысла ставить этот софт.

Потом увидим пару блоков. В первом – надписи Fan 1-5. Текущие обороты кулеров – здесь.

Fan 1 может не соответствовать вентилятору процессора. Это зависит от того, в какое гнездо его подключили. Например, бывает вентилятор на блоке питания или видеокарте. Поймешь, что к чему относится, если будешь регулировать обороты и смотреть, в каком узле меняется температура. Для этого снимите крышку системника и отслеживайте, какой кулер ускоряется, если обороты наращиваются.

Когда вычислишь соответствие надписей и вентиляторов, можешь смотреть на второй блок с надписями Temp 1-5. Тут находит отображение текущая температура узла, соответствующего кулеру.

Ищем надписи Pwm 1-6. В некоторых версиях программы надписи бывают обозначены, например, Speed 01-06 и стрелками вверх и вниз. Для понижения или повышения оборотов нужно кликнуть по нужной стрелке и выбрать подходящие значения. Не нужно сохранять результат или что-то перезагружать. Утилита сразу поменяет обороты.

ВАЖНО! Не ставьте минимальные и максимальные обороты кулера, иначе что-то сгорит или будет очень громко.

Как настроить AMD

По сравнению с видеокартами GeForce детище компании AMD-Radeon – со своим софтом, позволяющим управлять кулером. Программа под названием AMD Catalyst Control Center – это море возможностей.

Читайте также: