Регулятор напряжения 4квт с вентилятором схема подключения

Обновлено: 15.05.2024

Регулятор используется для изменения переменного напряжения, подаваемого на лампы и иные бытовые устройства с малой и средней мощностью. Данная схема отлично подходит для регулировки мощности трансформатора.

Схема регулятора собрана на основе симистора, что обеспечивает заметно меньший уровень помех в питающей сети без применения дополнительного фильтра.

  • схемная простота;
  • применение доступных в продаже электронных компонентов;
  • не требует наладки.

Принципиальная схема регулятора

Регулятор включается последовательно с нагрузкой. Допустимо как прямое подключение нагрузки, так и применение промежуточного трансформатора для гальванической развязки и изменения выходного напряжения. Оба варианта показаны на рисунке.

Принципиальная схема устройства представлена ниже

Функции управляющего компонента с переменным сопротивлением, который задает ток через нагрузку и, соответственно, определяет напряжение на ней, задает симистор. Изменение состояние симистора осуществляет динистор. Порог срабатывания динистора задается потенциометром, который включен в режиме переменного сопротивления. Предусмотрен также дополнительный защитный 10-килоомный резистор, который включен последовательно с потенциометром.

Как сделать простейший регулятор для трансформатора 220 В

Используемые детали

Печатная плата

Печатная плата имеет квадратную форму со стороной около 20 мм и скругленными углами. Изготавливается из гетинакса с односторонним фольгированием, кромки облагораживаются напильником. Металлизация отверстий не требуется.

Топология платы показана на рисунке Диаметр контактных площадок составляет примерно 2,3 – 3 мм, расстояние между центрами площадок и диаметр отверстий должны соответствовать габаритам выводов симистора и потенциометра.

Сборка схемы и особенности монтажа

Функции несущей основы схемы выполняет печатная пата, на которую, начиная с симистора и потенциометра, напаиваются все пять компонентов, а затем опять же пайкой подключаются соединительные провода.

При установке постоянного резисторы и динистора следует оставить между ними небольшой зазор. При установке конденсатора длины выводов целесообразно выбирать таким образом, чтобы корпус элемента можно было отогнуть на сторону установки симистора и потенциометра.

Для удобства управления движок потенциометра ориентируют наружу.

Проверка регулятора в работе

Включаем регулятор в разрыв лампы накаливания 220 В.

Вполне приемлемая плавная регулировка яркости лампы достигнута.

Включаем к разрыв цепи трансформатора выжигателя.

Теперь мощность накала спирали выжигателя можно легко регулировать без лишних усилий.

Смотрите видео

Регулятор напряжения своими руками

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Прибор реостат

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

Характеристика регулятора

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Простая схема регулятора

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Схема симисторного регулятора

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Схема Реле напряжения

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Схема блока питания

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Изменение оборотов асинхронного двигателя

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки - рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Схема обмоток конденсаторного электромотора
Конденсаторный двигатель с фазосдвигающей обмоткой

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя - разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 - скорость вращения магнитного поля

n2 - скорость вращения ротора

При этом обязательно выделяется энергия скольжения - из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз - то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор - это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

Регулировка скорости асинхронного двигателя

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.


Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора


      Недостатки:

          • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
          • все недостатки присущие регулировке напряжением

          Регулирование напряжением скорости вращения двигателя
          Управление скоростью двигателя трансформатором

          Тиристорный регулятор оборотов двигателя

          В данной схеме используются ключи - два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

          Принципиальная электронная схема регулятора оборотов двигателя вентилятора

          Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно "отрезается" кусок вначале или, реже в конце волны напряжения.


          Таким образом изменяется среднеквадратичное значение напряжения.

          Данная схема довольно широко используется для регулирования активной нагрузки - ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

          Ещё один способ регулирования - пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно - шумы и рывки при работе.

          Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

          • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
          • добавляют на выходе конденсатор для корректировки формы волны напряжения
          • ограничивают минимальную мощность регулирования напряжения - для гарантированного старта двигателя
          • используют тиристоры с током в несколько раз превышающим ток электромотора


          Достоинства тиристорных регуляторов:


          Недостатки:

              • можно использовать для двигателей небольшой мощности
              • при работе возможен шум, треск, рывки двигателя
              • при использовании симисторов на двигатель попадает постоянное напряжение
              • все недостатки регулирования напряжением

              Используется для изменения оборотов вентилятора
              Устройство тиристорного регулятора

              Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

              Транзисторный регулятор напряжения

              Как называет его сам производитель - электронный автотрансформатор или ШИМ-регулятор.

              Электронный трансформатор для двигателя вентилятора

              Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы - полевые или биполярные с изолированным затвором (IGBT).

              Электронная схема трансформатора регулировки вращения двигателя

              Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

              Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

              Выходной каскад такой же как и у частотного преобразователя, только для одной фазы - диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.


              Плюсы электронного автотрансформатора:

                    • Небольшие габариты и масса прибора
                    • Невысокая стоимость
                    • Чистая, неискажённая форма выходного тока
                    • Отсутствует гул на низких оборотах
                    • Управление сигналом 0-10 Вольт


                    Слабые стороны:

                          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
                          • Все недостатки регулировки напряжением

                          Частотное регулирование

                          Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина - не было дешёвых силовых высоковольтных транзисторов и модулей.

                          Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие - массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

                          На данный момент частотное преобразование - основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

                          Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

                          Однофазные двигатели могут управляться:

                          • специализированными однофазными ПЧ
                          • трёхфазными ПЧ с исключением конденсатора

                          Преобразователи для однофазных двигателей

                          В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей - INVERTEK DRIVES.

                          Это модель Optidrive E2

                          Частотный преобразователь для однофазных двигателей

                          Для стабильного запуска и работы двигателя используются специальные алгоритмы.

                          При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

                          f - частота тока

                          С - ёмкость конденсатора

                          В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

                          Преобразователь частоты для однофазного двигателя

                          Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя - в некоторых моделях это сделать довольно сложно.


                          Преимущества специализированного частотного преобразователя:

                                • интеллектуальное управление двигателем
                                • стабильно устойчивая работа двигателя
                                • огромные возможности современных ПЧ:
                                  • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
                                  • многочисленные защиты (двигателя и самого прибора)
                                  • входы для датчиков (цифровые и аналоговые)
                                  • различные выходы
                                  • коммуникационный интерфейс (для управления, мониторинга)
                                  • предустановленные скорости
                                  • ПИД-регулятор


                                  Минусы использования однофазного ПЧ:

                                        • ограниченное управление частотой
                                        • высокая стоимость

                                        Использование ЧП для трёхфазных двигателей

                                        Частотный преобразователь Тошиба

                                        Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

                                        Из однофазного двигателя удаляют конденсатор

                                        Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

                                        Расположение обмоток

                                        Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого - магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

                                        В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

                                        При работе без конденсатора это приведёт к:

                                        • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
                                        • разному току в обмотках

                                        Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна


                                        Преимущества:

                                                • более низкая стоимость по сравнению со специализированными ПЧ
                                                • огромный выбор по мощности и производителям
                                                • более широкий диапазон регулирования частоты
                                                • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)


                                                Недостатки метода:

                                                Регулятор мощности 12 вольт своими руками

                                                Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

                                                Простейший регулятор энергии

                                                Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

                                                Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

                                                Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

                                                Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

                                                Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

                                                Виды современных устройств

                                                Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

                                                На сегодняшний момент производство выпускает следующие типы приборов:

                                                 регулятор мощности на тиристоре

                                                1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
                                                2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
                                                3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
                                                4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

                                                При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

                                                • плавность регулировки;
                                                • рабочую и пиковую подводимую мощность;
                                                • диапазон входного рабочего сигнала;
                                                • КПД.

                                                Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

                                                Тиристорный прибор управления

                                                 регулятор мощности для паяльника своими руками

                                                Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

                                                Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

                                                Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

                                                Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

                                                Симисторный преобразователь мощности

                                                Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

                                                Регулятор мощности на симисторе

                                                Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

                                                Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

                                                Фазовый способ трансформации

                                                 регулятор напряжения фазовый

                                                Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

                                                Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

                                                При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

                                                Практические примеры для повторения

                                                Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

                                                Доминирующая схема

                                                Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

                                                 регулятор напряжения 220в своими руками

                                                Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

                                                При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

                                                В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

                                                Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

                                                Контроллер нагрева паяльника

                                                Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

                                                Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

                                                Регулятор мощности своими руками

                                                Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

                                                Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

                                                Самодельный регулятор

                                                Простейший регулятор мощности на симисторе легко можно собрать своими руками, даже если вы не радиолюбитель. Описанный в статье прибор состоит из копеечных деталей, которые без проблем покупаются в радиомагазине или достаются из вышедшей из строя техники (не со всякой, но об этом позже). Принцип работы, отладка и сборка регулятора описаны таким образом, чтобы любой, кто мало-мальски умеет пользоваться паяльником, смог повторить схему самостоятельно.

                                                Применение симисторных регуляторов в быту

                                                Подобные устройства применяются в быту везде, где есть необходимость плавно изменять мощность прибора или инструмента. В целом, работает такая схема по принципу снижения сетевого напряжения 230 В. А если напряжение питания электроприбора уменьшать, то пропорционально будет изменяться и его мощность.

                                                Пример. Допустим у нас есть рассчитанный на сетевое напряжение 230 В паяльник мощностью 80 Вт. Для пайки обычных радиодеталей и нетолстых проводов этой мощности слишком много. Жало перегревается, канифоль горит и чернеет, припой не прилипает, а скатывается шариками. Это означает, что температура на кончике жала слишком большая.

                                                А вот если уменьшить мощность такого паяльника, то перечисленные проблемы исчезнут. Сделать это можно путем снижения напряжения его питания с 230 В до, например, 80 В (почти в три раза). А поскольку мощность (а также температура нагрева жала) снижается пропорционально, то в итоге мы получим паяльник на 25-30 Вт.
                                                Симисторные регуляторы применяются для плавного изменения мощности:

                                                • паяльников (именно для паяльника было сделано описанное в статье устройство);
                                                • электрических сушилок для фруктов;
                                                • утюгов;
                                                • обогревателей;
                                                • других нагревательных приборов;
                                                • пылесосов;
                                                • электроинструментов – болгарок, орбитальных шлифовальных машинок, лобзиков;
                                                • другого оборудования с двигателями – точильных станков, сверлильных и прочих;
                                                • ламп накаливания.

                                                Касательно последнего пункта стоит отметить, что именно такая схема симисторного регулятора не очень подходит. Но и об этом подробнее сказано ниже.

                                                Простейшая схема симисторного регулятора и принцип ее работы

                                                На рисунке ниже изображена самая простая схема регулятора мощности на симисторе. Проще никак. Для начала рассмотрим компоненты, из которых состоит устройство, и зачем они там нужны.

                                                схема симисторного регулятора

                                                Схема регулятора мощности на симисторе

                                                В данной схеме присутствует всего 5 радиодеталей:

                                                1. Симистор U1.
                                                2. Динистор D1.
                                                3. Конденсатор C1.
                                                4. Переменный резистор RV1.
                                                5. Резистор R1.

                                                Затем ток меняет свое направление, так как напряжение у нас переменное. Это приводит к тому, что симистор закрывается.

                                                Например, если пропустим только половину, то 80-ваттный паяльник будет потреблять только 40 Вт, и греться в два раза слабее. А для этого нам надо каждый раз открывать симистор ровно на половине полуволны переменного напряжения. Вторая полуволна будет как бы срезаться, и для питания прибора не использоваться.

                                                Резисторы R1 и RV1 – ограничивают ток через наш конденсатор. Чем меньше их суммарное сопротивление, тем быстрее конденсатор заряжается и достигает нужного для открытия динистора напряжения. Когда сопротивление резисторов увеличивается, ток течет меньший, и заряд конденсатора происходит медленнее.

                                                Теперь рассмотрим слаженную работу всех этих компонентов вместе. Симистор на каждой полуволне переменного напряжения (50 раз в секунду) открывается и закрывается на определенный промежуток времени, пропуская, или наоборот, не пропуская через себя ток. В зависимости от длительности этого промежутка времени нагрузка (паяльник, двигатель, лампа) получает то или иное напряжение.

                                                Открывается симистор в тот момент, когда на динисторе появляется достаточное для его пробоя (открывания) напряжение. За то, на каком моменте полуволны это произойдет, отвечает конденсатор. А насколько быстро или медленно он будет заряжаться, зависит от сопротивления резисторов в данный момент.

                                                В итоге, если мы будем вращать ручку переменного резистора, мы будем менять время заряда конденсатора, момент срабатывания динистора и открывания симистора. Когда сопротивление потенциометра минимальное (ручка выкручена до упора влево), ток через конденсатор максимально большой, заряжается он быстро, динистор открывается рано, и симистор на протяжение почти всей полуволны пропускает ток на нагрузку.

                                                Когда мы выкручиваем ручку в сторону увеличения сопротивления потенциометра, процесс заряда конденсатора замедляется, динистор открывается позже, а симистор пропускает в результате меньше тока на нагрузку.

                                                Сборка регулятора мощности на симисторе своими руками

                                                Компоненты для сборки регулятора

                                                1. Симистор BTA06-600C. Такая маркировка означает, что он может пропускать ток силой до 6 А и рассчитан на напряжение до 600 В. Деталь можно заменить на аналогичные, но с учетом этих двух характеристик. Поскольку регулятор у нас для сетевого напряжения, то и симистор должен быть рассчитан на соответствующее напряжение. Чтобы он не перегорел от всплесков напряжения в сети, берем с запасом. Сила тока рассчитывается исходя из мощности подключаемой к регулятору нагрузки. Для этого мощность нагрузки надо разделить на напряжение в сети. Например, для паяльника на 80 Вт максимальная сила тока, которую будет пропускать симистор, составит всего 0,35 А. Как видим, нашего 6-амперного симистора хватит с большим запасом.
                                                2. Динистор DB3. Через него текут минимальные токи, да и напряжение сравнительно невысокое. Потому можно взять практически любой похожий.
                                                3. Конденсатор. Пленочный, неполярный, рассчитанный на напряжение более 250 В. Емкость – 0,1 микрофарад (или 100 нанофарад, что одно и то же). Обозначается такой кодом 104. Максимальное напряжение тоже обязательно должно быть указано. Если такой надписи нет, то конденсатор использовать нельзя. Электролитические полярные конденсаторы тоже использовать нельзя.
                                                4. Резистор R1. Постоянный. Рассчитанный на рассеиваемую мощность 1 Вт. Сопротивление в данном случае 68 кОм. Хотя во многих схемах используется резистор с гораздо меньшим сопротивлением. Почему так, станет понятно во время испытаний. У начинающих радиолюбителей может возникнуть вопрос – зачем нужен этот резистор. А нужен он для того, чтобы ограничивать ток, когда ручка потенциометра выкручена так, что его сопротивление равно или близко к нулю. Если бы не было R1, то весь ток потек бы через RV1, и он бы перегорел от перегрева.
                                                5. Переменный резистор. В распаянной схеме стоял на 250 кОм. Подходящего с таким номиналом не нашлось, потому был взят на 470 кОм. К нему параллельно был припаян постоянный резистор на 330 кОм, в результате чего переменный стал примерно на 250 кОм.
                                                6. Маленький резистор (на фото). В разобранной схеме был на 330 кОм, и был впаян параллельно переменному резистору. Позже его пришлось удалить, так как из-за него был высокий минимальный порог регулируемого напряжения.

                                                Остановимся немного на резисторах, так как от них зависит регулировочный диапазон в данной схеме. Начнем с R1. Чем меньше его сопротивление, тем большее максимальное напряжение мы сможем получить на выходе регулятора. Однако при уменьшении его сопротивления возрастает ток, протекающий через него во время заряда конденсатора. Соответственно, резистор может нагреваться. А потому надо брать уже не на 1 Вт, а на 2 Вт.

                                                Переменный резистор или потенциометр. От его номинала зависит минимальное напряжение, до которого будет снижаться сетевое при помощи регулятора. Так, если взять на 250 кОм, то напряжение удастся понизить примерно до 50-70 В (при R1 68 кОм). Если же взять на 500 кОм, то напряжение получится понизить еще.

                                                розетка, вилка и кабель

                                                Кроме радиодеталей для сборки регулятора понадобится розетка, отрезок кабеля и вилка.

                                                Розетку неплохо было бы закрепить на каком-либо основании, например, на деревянной колодке. Хотя при стационарном использовании ее можно пристроить и на стене, и на столе, и под ним.

                                                Сборка регулятора и некоторые особенности устройства

                                                переменный резистор

                                                Начинать сборку желательно с самого большого компонента. В данном случае им является переменный резистор. Как видно, даже штатная начинка розетки не позволяет использовать габаритный потенциометр. Кроме того, нам же внутрь еще парочку деталей запихнуть надо. В итоге, после нескольких примерок переменный резистор было решено закрепить следующим образом.

                                                Лучше, конечно, было бы устанавливать его в ту часть розетки, где будет вся остальная начинка. А так придется соединять схему проводами достаточной для сборки и разборки длины.

                                                Далее идет вторая по размерам деталь – симистор. На фото он установлен на небольшой радиатор. Но это не для охлаждения, так как мощность, которую мы будем питать от регулятора, всего 80 Вт. Однако с радиатором симистор встал на свое место, как родной, и крепить его никак не пришлось.

                                                Следующим шагом идет пайка динистора. Согласно схеме – он находится одним выводом на управляющем выводе симистора. В этом симисторе управляющим является крайний правый. При распайке обвязки симистора важно ничего не перепутать. Потому, если вы используете другие компоненты (аналоги), уточняйте назначение выводов.

                                                Теперь свободный вывод динистора соединяем конденсатором с тем выводом симистора, который мы красным проводом подвели к контакту розетки. Сюда же (к динистору и конденсатору) паяем провод, который пойдет на один из выводов переменного резистора. Кстати, две из трех ножек переменного резистора необходимо предварительно соединить. Как на схеме.

                                                Далее к проводу, который входит в регулируемый контакт розетки, паяется резистор (в нашем случае на 68 кОм 1 Вт). Остается только соединить свободный вывод переменного резистора с постоянным, соединив их, таким образом, последовательно.

                                                Все. Регулятор готов. На фото, правда, есть еще маленький резистор. Он соединен параллельно с переменным резистором, как и было в оригинале на плате шлифовальной машинки. Однако после теста он был убран, так как из-за него напряжение удавалось понижать только до 120 В.

                                                Проверка регулятора мощности

                                                После сборки симисторного регулятора его необходимо протестировать. Это позволит:

                                                Для проверки нужен мультиметр и нагрузка. Мультиметр необходимо подсоединить к контактам регулируемой розетки, предварительно включив на нем режим измерения переменного напряжения более 300 В (в дешевых приборах, как на фото, это 750 В). Нагрузку нужно подключать обязательно. Иначе ток через нашу схему не пойдет, и ее работы мы, соответственно, не увидим.

                                                ⚠ Внимание! Компоненты схемы и штатная начинка розетки находятся под опасным для жизни напряжением. Потому ни в коем случае нельзя прикасаться к радиодеталям, оголенным проводам и так далее. Браться руками можно только за пластиковый корпус розетки и ручку потенциометра.

                                                Чтобы не рисковать, проверить прибор можно и в собранном состоянии. Для этого в нашу регулируемую розетку включаем тройник или удлинитель с двумя розетками. В одну из них включаем нагрузку (паяльник, например), а во второй измеряем щупами мультиметра напряжение.

                                                Проверка на разобранном регуляторе

                                                Проверка на разобранном регуляторе выглядит следующим образом.

                                                Здесь потенциометр установлен на максимальное сопротивление. Напряжение на выходе регулятора из 230 В снизилось до 59 В. Справа от вольтметра другой мультиметр, включенный на измерение температуры. Его датчик (термопара) прикладывается к жалу паяльника. Как видно по фото, при подаче на 80-ваттный паяльник всего 59 В максимальная температура его жала составила примерно 200 °C. Этого вполне достаточно, чтобы паять при помощи припоя ПОС-60. Для пайки более тугоплавких привоев напряжение следует повысить, и жало разогреется до большей температуры.

                                                максимальное напряжение

                                                Минимальный порог напряжения на выходе можно снизить еще больше. Для этого надо заменить резистор RV1, установив вместо 250-килоомного, например, на 500 кОм. В результате мы сможем еще больше ограничить ток через конденсатор, он будет заряжаться еще медленнее, динистор будет открываться еще позже, а симистор будет в открытом состоянии еще меньший промежуток времени. Однако это может привести к нестабильной работе регулятора, что потребует усложнения схемы путем добавки в нее еще одного конденсатора.

                                                А это уже максимальное напряжение, которое получается на выходе нашего регулятора. Температура на кончике жала паяльника более 300 градусов (грелся еще, но не стал мучить термопару). Когда этот паяльник включен в розетку 230 В напрямую – он раскаляется и до 400 градусов, что никуда не годится.

                                                Максимальное напряжение на выходе регулятора можно повысить. Для этого надо уменьшить сопротивление резистора R1, заменив его на другой. При этом следует помнить, что через него потечет больший ток, и на нем будет выделяться больше тепла. Соответственно, если взять резистор R1 сопротивлением 5-10 кОм, то его рассеиваемая мощность должна быть уже не 1 Вт, а 2Вт.

                                                В данном случае это не нужно, так как и при 185 вольтах жало перегревается очень сильно.
                                                При подключении к такому регулятору паяльника, если прислушаться, то можно различить тихое жужжание. Это нормально, и паяльнику никак не навредит.

                                                А вот если подключить к нашему регулятору лампу накаливания, то вместо жужжания мы увидим мерцание. Чем меньше будет напряжение и яркость лампы, тем мерцания станут более заметными. Для лампы это не вредно, а вот для нашего зрения – еще как. Потому использовать данную схему в качестве диммера для ламп не стоит. Для этого есть другие схемы, ненамного сложнее этой.

                                                Завершение

                                                В завершение не лишним будет напомнить о нескольких вещах. Во-первых, соблюдайте осторожность при тестировании регулятора. Там высокое напряжение, способное если не убить человека, то привести к ожогам и болезненным ощущениям. Во-вторых, будьте внимательны при подборе симистора из аналогов. Учитывайте мощность нагрузки, ток и вольтаж. В-третьих, при изготовлении регуляторов по этой схеме для более мощной нагрузки от навесного монтажа стоит отказаться. Детали надо запаять на плате, и вынести ее в отдельный корпус.

                                                Читайте также: