Как разобрать ферритовый трансформатор в микроволновке

Обновлено: 26.04.2024













Работая над своим новым проектом у меня возникла необходимость перемотать трансформатор с ферритовым магнитопроводом от импульсного блока питания под нужные мне напряжения.

Покупать каркас и феррит мне не очень хотелось, поскольку в моей кладовке полно неисправных компьютерных блоков питания из которых легко достать необходимый для моей самоделки трансформатор.

Клея китайцы не пожалели, залили на совесть и на века…

Думали разбирать импульсный трансформатор никто не будет. Наши Кулибины все разберут, перемотают и опять соберут.

Технология разборки очень простая надо сильно нагреть ферритовый магнитопровод до 300°С, клей хорошенько размякнет и аккуратно расшатывая вытаскиваем половинки феррита из каркаса.

Делать надо быстро и аккуратно, обязательно в перчатках, не дожидаясь охлаждения магнитопровода, иначе клей снова намертво прилипнет.

Можно использовать строительный фен или положить трансформатор ферритом на сковородку. Скажу честно, пока научился расколол пять трансформаторов.

Я решил использовать паяльную станцию предварительно выставил 300°С на терморегуляторе.


Аккуратно извлеките очень хрупкий ферритовый магнитопровод из каркаса.



Кусачками откусите медные обмотки и размотайте.

Остатки медного провода следует удалить паяльником.



Готовый к намотке каркас с ферритовым магнитопроводом.



Чтобы намотать новые обмотки на каркас я использую самодельный станок для намотки трансформаторов.

Второй способ разборки импульсного трансформатора


Это самый популярный и доступный способ.

Просто берем глубокую посуду нужных размеров и нагреваем в нем воду до температуры кипения.

Затем берем палочку длиной больше диаметра посуды и привязываем точно посередине медный провод или толстые нитки. Другой конец провода привязываем к контактам трансформатора.

Погружаем трансформатор в кипяток.

Важно чтобы разбираемый импульсный трансформатор не касался дна, а был бы примерно посередине. Это нужно для равномерного прогрева со всех сторон.

Ждем 10-15 минут, вынимаем изводы и аккуратно, без дополнительных усилий, разъединяем половинки сердечника. Обязательно надеваем перчатки, т.к. сердечник очень горячий.

Третий способ разборки — мощный паяльник


Я применял этот способ неоднократно.

Включаем мощный паяльник, например 100Вт, и ждем до полного прогрева.

Устанавливаем трансформатор под корпусом паяльника, там где расположен нагревательный элемент.

Для равномерного прогрева главное, чтобы не было зазора. Через 10-15 минут прогреваем другую сторону.

Потом пробуем разобрать. Если клей еще не ослаб, надо продолжать нагрев. Не следует применять силу, иначе можно сломать сердечник.

Во всех случаях надо нагревать сердечник, поэтому не забывайте о правилах безопасности.

Видео: Как разобрать импульсный трансформатор

Намотка импульсных трансформаторов

Предполагается, что необходимое количество витков обмоток и диаметры проводов вам известны.

Итак, что нам нужно:

1. Провода. Для намотки трансформаторов используются провода в двойной и тройной изоляции. Можно взять провода подходящего диаметра из старых силовых трансформаторов или реле (например, провод ПЭВ-2).

2. Сердечник от старого/сгоревшего/неподходящего импульсного трансформатора.

Схема намотки импульсного трансформатора

Допустим, что у нас есть каркас, такой, как на рисунке. Нам нужно намотать трансформатор, такой, как в нижнем правом углу рисунка.

Сначала наматываем первичную обмотку. Зачищаем один конец провода и припаиваем его к четвертой ножке трансформатора. Это будет начало обмотки. Наматываем провод виток к витку снизу вверх, в направлении, указанном на рисунке. Когда первый слой заполнится, начинаем наматывать второй слой, также виток к витку, но уже сверху вниз. Последний слой нужно равномерно распределить по всей высоте сердечника. Оставшийся конец провода зачищаем и припаиваем к первой ножке.

После этого наматываем несколько слоев изоляции, например, полиэстеровой или фторопластовой пленки. Изоляцию нужно наматывать так, чтобы она была от самого низа, немного с запасом, и до самого верха, так же с запасом. Небольшой запас делается для того, чтобы полностью исключить возможность соскальзывания вторичной обмотки, которая будет поверх изоляции, на первичную, так как это очень опасно (чревато замыканием обмоток и тем, что напряжение с первичной обмотки попадёт во вторичную цепь).

Далее наматываем вторичную обмотку. Зачищаем и припаиваем один конец провода к восьмой ножке трансформатора. Это будет начало обмотки. Наматываем провод виток к витку снизу вверх, в направлении, указанном на рисунке. Когда первый слой заполнится, начинаем наматывать второй слой, также виток к витку, но уже сверху вниз. Последний слой нужно равномерно распределить по всей высоте сердечника. Оставшийся конец провода зачищаем и припаиваем к пятой ножке.

И, наконец, поверх вторичной обмотки снова наматываем несколько слоев изоляции. Вот и все, трансформатор — готов.

При намотке нужно избегать образования перегибов или узелков на проводе, так как изоляция в таком месте будет хуже, что чревато межвитковым замыканием.

Для намотки не рекомендуется использовать провод толще AWG26 (0,4 мм) из-за возникновения скин-эффекта (протекание высокочастотных токов не по всему объему проводника, а только по поверхностному слою). Если при расчете у вас получилось, что нужен провод толще 0,4 мм, то нужно использовать намотку двойным или тройным проводом 0,4 мм.

Как намотать импульсный трансформатор

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый.

В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части.

То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT.

При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.



Скачиваем и запускаем программу Lite-CalcIT.
Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления.

Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Вторичных обмотки будет две, с отводом от середины.

Номинальное напряжение указывается для одной обмотки.

В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет. В ходе него я получил следующие параметры:

  • Число витков первичной обмотки 38;
  • Число витков вторичной обмотки 10+10 двумя жилами указанного провода.

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.



Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.


Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.


После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому.



Припаиваем контакт.

Кладем изоляцию. Все, первичка готова.

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.


Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.


Работая над своим новым проектом у меня возникла необходимость перемотать трансформатор с ферритовым магнитопроводом от импульсного блока питания под нужные мне напряжения.

Покупать каркас и феррит мне не очень хотелось, поскольку в моей кладовке полно неисправных компьютерных блоков питания из которых легко достать необходимый для моей самоделки трансформатор.

Клея китайцы не пожалели, залили на совесть и на века…

Думали разбирать импульсный трансформатор никто не будет. Наши Кулибины все разберут, перемотают и опять соберут.

Технология разборки очень простая надо сильно нагреть ферритовый магнитопровод до 300°С, клей хорошенько размякнет и аккуратно расшатывая вытаскиваем половинки феррита из каркаса.

Делать надо быстро и аккуратно, обязательно в перчатках, не дожидаясь охлаждения магнитопровода, иначе клей снова намертво прилипнет.

разбор и прогрев импульсного трансформатора

Можно использовать строительный фен или положить трансформатор ферритом на сковородку. Скажу честно, пока научился расколол пять трансформаторов.

Я решил использовать паяльную станцию предварительно выставил 300°С на терморегуляторе.


Аккуратно извлеките очень хрупкий ферритовый магнитопровод из каркаса.


Кусачками откусите медные обмотки и размотайте.

Остатки медного провода следует удалить паяльником.


Готовый к намотке каркас с ферритовым магнитопроводом. Чтобы намотать новые обмотки на каркас я использую самодельный станок для намотки трансформаторов.

Второй способ разборки импульсного трансформатора

Это самый популярный и доступный способ.

Просто берем глубокую посуду нужных размеров и нагреваем в нем воду до температуры кипения.


Затем берем палочку длиной больше диаметра посуды и привязываем точно посередине медный провод или толстые нитки. Другой конец провода привязываем к контактам трансформатора.

Погружаем трансформатор в кипяток.

Важно чтобы разбираемый импульсный трансформатор не касался дна, а был бы примерно посередине. Это нужно для равномерного прогрева со всех сторон.

Ждем 10-15 минут, вынимаем изводы и аккуратно, без дополнительных усилий, разъединяем половинки сердечника. Обязательно надеваем перчатки, т.к. сердечник очень горячий.

Третий способ разборки — мощный паяльник

разбор имп. трансформатора с помощью паяльника

Я применял этот способ неоднократно.

Включаем мощный паяльник, например 100Вт, и ждем до полного прогрева.

Устанавливаем трансформатор под корпусом паяльника, там где расположен нагревательный элемент.

Для равномерного прогрева главное, чтобы не было зазора. Через 10-15 минут прогреваем другую сторону.

Потом пробуем разобрать. Если клей еще не ослаб, надо продолжать нагрев. Не следует применять силу, иначе можно сломать сердечник.

Во всех случаях надо нагревать сердечник, поэтому не забывайте о правилах безопасности.

Видео: Как разобрать импульсный трансформатор

Как намотать импульсный трансформатор

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый.

В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части.

То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT.

При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.

Скачиваем и запускаем программу Lite-CalcIT.

Скачиваем и запускаем программу Lite-CalcIT.

Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления.

Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Вторичных обмотки будет две, с отводом от середины.

Номинальное напряжение указывается для одной обмотки.

В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет. В ходе него я получил следующие параметры:

  • Число витков первичной обмотки 38;
  • Число витков вторичной обмотки 10+10 двумя жилами указанного провода.

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.

Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.

Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.


Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.

После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому.

Припаиваем контакт.

Припаиваем контакт.

Кладем изоляцию. Все, первичка готова.

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.


Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.


Изолируем первичную обмотку от вторичной.


P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.

Как намотать вторичную обмотку импульсного трансформатора

Подпаиваем два провода к выводу нашего транса от БП ПК.

Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.



Оставляем хвост и изолируем.

Далее подпаиваем еще два провода к другим контактам.


Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.


Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.

В принципе можно и с отводом от середины так мотать, кому как удобней короче.

P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.

Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.


Косу, которая получилась, перед скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.

В большинстве случаев возникают такие неисправности, когда ремонт микроволновки своими руками может сделать любой, даже не имеющий знаний в электрике. К таким неисправностям относится ремонт сетевого шнура, ремонт защитного выключателя на дверцах микроволновой печи, замена предохранителей, замена высоковольтного конденсатора и диода.

Открытая микроволновка

Расположение элементов в микроволновке

Можно практически устранить любую неисправность печи не связанную с магнетроном, высоковольтным трансформатором и электронной платой. Помните, что заниматься ремонтом нужно предварительно вынув вилку из розетки, и важно выждать несколько минут, пока не разрядится высоковольтный конденсатор. Далее снимаем кожух печи. По бокам имеются несколько шурупов, которые нужно открутить. На рисунке показана микроволновая печь без кожуха.

Ремонт сетевого шнура довольно прост. Его нужно прозвонить тестером или лампочка с батарейкой (прозвонкой). Во время прозвонки шнура, его нужно перегибать по всей длине. После того как обрыв найден устраняют его ремонтом или заменой.

После тестирования сетевого шнура нужно проверить целостность высоковольтного предохранителя. Для этого разъединяем защитный корпус предохранителя. Если предохранитель целый, мы увидимся растянутую пружину с припаянной проволокой. Если предохранитель перегорел, тогда его нужно заменить таким же. Не устанавливайте самодельные предохранители, так как возможен выход из строя самого магнетрона.

Высоковольтный предохранитель

Визуальный осмотр высоковольтного предохранителя

Целостность высоковольтного конденсатора проверяют его включением последовательно с лампочкой 15 Вт Х 220 В. Далее подают 220 В на последовательно соединенные конденсатор и лампочку, из розетки. При исправном конденсаторе лампочка будет гореть в половину накала, а при неисправном, лампа горит ярко или совсем не горит. Далее отключив от сети, конденсатор нужно разрядить, осторожно замкнув отверткой его клеммы. В результате мы увидим хороший разряд, что также говорит о его исправности.

Высоковольтный конденсатор

Высоковольтный конденсатор

Следующим проверяем высоковольтный диод, включив его также последовательно с лампочкой 15 Вт 220 В. Лампа при пробитом диоде будет гореть ярко, при его обрыве лампа не горит, а при исправном диоде лампа горит в половину накала. Все электронные компоненты микроволновки можно приобрести в специализированном магазине.

В районе правого торца дверцы, со стороны корпуса, находится конечный выключатель. Если дверца не плотно закрыта, тогда не замкнуться контакты защитного выключателя, и не включится микроволновая печь. Прозвонить микрик можно тестером или прозвонкой.

На анод магнетрона подается 4 кВ, поэтому иногда происходит оплавление колпачка магнетрона. Такая неисправность может возникнуть при плохом контакте колпачка магнетрона с разъемом. Чтобы устранить эту неисправность достаточно повернуть разъем на 180°.

Иногда микроволновка издает гром и молнию. Такой эффект проявляется при попадании жира на слюдяной фильтр, который расположен на выходе волновода магнетрона. Жир на фильтре может вызвать пробой слюдяной изоляции, жир начинает гореть на слюдяном фильтре, что провоцирует появление грома и молнии. Слюдяной фильтр защищает магнетрон от влаги, брызг жира и должен быть сухим и чистым.

Магнетрон

Магнетрон

Ремонт электронной платы в микроволновке своими руками

Самое слабое место электронной платы — это предохранитель и трансформатор. Предохранитель можно заменить, а вот трансформатор нужно подбирать по напряжению выходных обмоток и по размерам. То есть заменить его можно в мастерских, если есть чем заменить. Обычно их снимают с других неисправных микроволновок. Скорее всего, будет заменена вся электронная плата, что обойдется вам недешево.

Предохранитель

Предохранитель на плате управления

В этом случае можно подумать о приобретении новой микроволновой печи. Причина выхода из строя трансформатора электронной платы является низкое качество электросетей, частые броски напряжения и обрыв нулевого провода. Напряжение на сетевой обмотке трансформатора резко повышается, тонкие сетевые провода не выдерживают повышенного напряжения и сгорают.

Хорошо, что в некоторых моделях микроволновок, прямо на сетевой обмотке трансформатора ставится предохранитель (термофьюс). Тогда его можно просто закоротить. Для этого трансформатор нужно аккуратно отпаять, размотать изоляцию сетевой обмотки до предохранителя, и припаять перемычку. Определить имеется ли термофьюс на сетевой обмотке трансформатора, можно визуально по наличию возвышения.

Трансформатор

Трансформатор на плате управления

Однако в большинстве случаев такого предохранители нет, поэтому применим неординарный способ восстановления трансформатора на электронной плате. В первую очередь вам нужно определить напряжение на вторичных обмотках трансформатора. Определить напряжение можно по находящемуся рядом реле, на корпусе которого указано напряжение питания реле, типу стабилизатора напряжения.

В основном это стабилизатор на 5 В. Считываем маркировку микросхемы стабилизатора напряжения, и в интернете находим его входное напряжение. Также выходное напряжение можно найти по номеру на трансформаторе (например 6190W32007H EI4228 230V 12V,18V,8V), где определяем величину вторичного напряжения обмоток. Обычно это 12 или 8 В. Допустим нашли мы напряжение обмотки 8 В.

Характеристики трансформатора

Данные обмоток трансформатора на корпусе

Лучше всего искать обмотку с напряжением питания стабилизатора напряжения, так как это самая большая нагрузка. Идём в магазин и покупаем трансформатор на 220 В с выходом 9 В, учитывая ток стабилизатора напряжения умноженный на 2. Напряжение 9 В трансформатор выдает под нагрузкой, на холостом ходу это напряжение может быть 10 — 11 В.

Размер (или мощность) купленного трансформатора должен быть в 1,5 — 2 раза больше установленного на электронной плате. Этот метод заключается в том, что мы подключаем вторичную обмотку нового трансформатора параллельно вторичной обмотке (8 В) трансформатора на электронной плате, как показано на рисунке ниже.

Ремонт трансформатора микроволновки

Способ восстановления трансформатора на электронной плате микроволновки

При включении нового трансформатора в сеть через обмотку 8 В будет подаваться напряжение на сгоревший трансформатор, и на нём появятся все отсутствующие напряжения, то есть он заработает как обычный трансформатор, но только не как понижающий 220 В на 12 и 8 вольт, а с 8 В на 12 В, т. е. восстановятся все отсутствующие напряжения, сколько бы обмоток не было. Двухкратная мощность трансформатора нужна для компенсации мощности старого сгоревшего трансформатора.

Длина проводов обмотки 8 В должна быть такой, чтобы новый трансформатор мог быть закреплен под платой на корпусе печки (места хватает). Сетевые провода 220 В нового трансформатора нужно подключить параллельно контактным площадкам 220 В на плате идущие к старому трансформатору, а дорожки от этих клемм к сетевой обмотке трансформатора на плате обрезать на 1-2 мм. Всё, включаем микроволновую печь и радуемся. Таким образом, можно ремонтировать не только микроволновую печь, но и другую бытовую технику.

Трансформатор для микроволновки — важное звено цепи, генерирующей СВЧ-излучение. Это преобразователь напряжения электросети до величины, подаваемой на вход магнетрона. Высоковольтный преобразователь нередко становится причиной поломки микроволновой печи.

Проверка трансформатора на работоспособность — обязательный пункт в перечне мероприятий по технической диагностике для выяснения причин неисправности. Так как речь идет о высоких напряжениях, самостоятельное вмешательство возможно лишь при соблюдении всех мер безопасности.

Где взять высокое напряжение?

Пища в СВЧ-печках греется за счет работы сверхвысокочастотных волн. Генерирует микроволны специальный излучатель — магнетрон. Чтобы работать в заданных характеристиках, ему необходимо высокое напряжение — 2 000 В. Это почти на порядок выше того, что дает бытовая электросеть (220 В).

Откуда же берутся киловольты? Они создаются на выходе вторичной обмотки высоковольтного преобразователя.

Трансформатор СВЧ печи

Важно! СВЧ-печка, даже отключенная от электросети, может ударить электротоком (U до 5 000 В).

Виды высоковольтных преобразователей

Элементы преобразователя, установленного в СВЧ-печке:

  • магнитопровод;
  • каркас;
  • первичная обмотка;
  • две вторичные обмотки.

На первичную обмотку поступает U = 220 V. От вторичных питается накальная нить. Первая из двух вторичных обмоток изготовлена из провода большого сечения. U на выходе — приблизительно 3 В. На выходе второй обмотки — переменное высокое U = 4 кВ.

Строение трансформатора СВЧ

В микроволновках разных марок использованы преобразующие устройства различного производства. Преобразователи выглядят не одинаково и имеют разные характеристики. Они отличаются:

  • мощностью;
  • выходным напряжением вторичных обмоток;
  • числом витков в катушках и сечением провода;
  • габаритами;
  • способом закрепления.

Вторичную катушку, подобно одному из выводов излучателя, замыкают на корпус.

Внешний вид трансформатора

Схема электрической цепи

В электросхеме СВЧ-печи, помимо преобразователя, присутствуют:

  • диод;
  • высоковольтный конденсатор;
  • магнетрон;
  • предохранитель;
  • электродвигатель — один или два (для вращения поддона, если он предусмотрен конструкцией, и для вентилятора);
  • блок управления.

В дорогих СВЧ-печках вместо преобразователя используют импульсный блок, который имеет более сложное устройство, но весит меньше.

Электросхема СВЧ

Какие бывают неисправности?

Проверить трансформатор нужно в двух случаях: когда печка плохо работает и когда вовсе не работает. Заподозрить неисправность именно этого элемента можно по следующим признакам:

  • микроволновая печь непривычно громко шумит;
  • еда, помещенная в камеру, не подогревается или греется незначительно;
  • при работе пахнет горелой изоляцией, техника дымит.

Если появится хотя бы один из перечисленных симптомов, устройство лучше не включать — до устранения неполадки. Включение неисправной печки может привести к усугублению поломки.

Одна из самых распространенных причин выхода из строя электрооборудования — скачки в электросети. Если есть подозрение, что аппарат неисправен из-за перепадов в сети, необходим срочный ремонт. Впрочем, не исключено, что во время ремонтных работ обнаружится заводской брак.

Внешний вид внутри СВЧ

Причины неисправностей

Преобразователь выходит из строя чаще всего из-за:

  • Обрыва провода. Может оборваться провод одной из обмоток.
  • Короткого замыкания в обмотках. Это может произойти в одной катушке или в обеих.
  • Обрыва либо замыкания в катушке магнетрона.

Магнитопровод преобразователя собран из стальных пластинок. Если пластины отслаиваются, аппарат будет шуметь. Необходимо узнать мощность трансформатора и заменить его. Такие глобальные поломки можно без труда определить на глаз, но случаются они не часто. Подавляющее число проблем все-таки спровоцированы катушками.

Проверка деталей мультиметром

Порядок проверки

Чтобы проверить исправность высоковольтного преобразователя, нужно вооружиться мультиметром, также понадобятся:

  • отвертками с разными наконечниками;
  • плоскогубцы;
  • омметр.
  • выключить аппарат — достать вилку из розетки;
  • открутить винты и снять кожух;
  • разрядить конденсатор;
  • снять клеммы с трансформатора;
  • проверить тестером катушки — если отклонений нет, ставят назад;
  • если обнаружено повреждение — оборвался провод или произошло замыкание, меняют устройство;
  • собрать печь и проверить ее функционирование.

Если прибор после предпринятых мероприятий по-прежнему не работает, следует продолжить поиск неисправностей или проверить устройство под напряжением.

Трансформатор со следами оплавленной изоляции и издающий запах гари не нуждается в дальнейшей проверке: он сломан и не подлежит ремонту.

Важно! Чтобы проверить трансформатор, приходится разобрать СВЧ-печь — делать это можно только при отключении ее от электросети.

Высоковольтный конденсатор запросто сохраняет огромный электрозаряд, поэтому перед измерениями его необходимо разрядить. Как этого добиться? Просто замкнуть его контакты друг с другом — это можно сделать, например, пассатижами.

Тест конденсатора мультиметром

Варианты диагностики

Рассмотрим распространенные варианты поиска причин поломки.

Безопасная проверка

Наиболее безопасное исследование проводится тестером и заключается в исследовании катушек на предмет повреждений. Порядок действий:

  • Мультиметр настраивают на нужные пределы и определяют с его помощью сопротивление всех обмоток — первичной и двух вторичных. Исследование делают на снятом трансформаторе.
  • Если на тестере высвечивается единица, значит произошел обрыв.
  • При замкнутой цепи на первичной катушке появится значение в диапазоне 2–4,5 Ом (тестер выставлен на 200 Ом). На накальной — 3,5–8 Ом, на высоковольтной вторичной (2 000 Ом) — 140–350 Ом.

Если значение сопротивления выходит за рамки указанных диапазонов, вероятно, произошло межвитковое замыкание.

При замерах необходимо учесть собственную погрешность мультиметра. Определить ее можно, замкнув щупы накоротко в установленном пределе. Полученное значение — погрешность.

Безопасную проверку можно выполнить самостоятельно или пригласить специалиста из сервиса. Чтобы прозвонить обмотки, пользователю достаточно знать азы электротехники и иметь навыки работы с тестером.

Проверка под напряжением

Если измерения проведены, полученные замеры соответствуют норме, но печка по-прежнему не работает, необходимо исследовать ряд характеристик. Измерение выходного напряжения на вторичных обмотках — достаточно опасное дело. Порядок действий:

  • К микроволновке подается 220 В.
  • Тестером замеряют U на выходах обеих вторичных обмоток. Высоковольтная — 2 кВ, накальная — 3 В.

Для этого метода необходимо оснащение, которое может измерить переменное напряжение более 2 кВ.

Обратная проверка

Этот вариант менее проблематичен. К вторичной обмотке подводят 220 В, с первичной снимают около 24 В. Коэффициент — 9,1. Если на первичную обмотку подать 12 В, на вторичной будет около 109 В.

Если при холостом ходе трансформатор нагревается, вероятно, произошло межвитковое замыкание. Если же устройство греется под нагрузкой, а при ее выключении перестает греться, следует продолжать поиски неполадки.

Обратная проверка

Как выбрать способ проверки

Вариант исследования преобразователя важно выбирать, опираясь на свою квалификацию, знания и навыки. Безопаснее всего — просто прозвонить цепи на целостность. Если во время измерений подключено 220 В, необходимо соблюдать особые меры предосторожности.

Если нет уверенности в своих знаниях, лучше обратиться к профессионалу.

У каких СВЧ-печек проблемы

Учитывая именитость брендов, трудно предположить, что все они пренебрегают качеством используемых составляющих электроцепей. Скорее всего, такая тенденция связана с популярностью данных торговых марок. Их больше покупают, потому и статистика поломок выше. Но при расчете числа поломок на количество проданных единиц становится очевидно, что ломаются они ничуть не чаще, чем другие известные брендов.

СВЧ на кухне

Меры предосторожности

При проведении измерений под напряжением может произойти поражение электрическим током, вплоть до летального исхода. Избежать опасности помогут два правила:

Ремонт любой электротехники сопряжен с опасностью поражения электротоком. При проверке трансформатора в микроволновке нужно быть особенно осторожным из-за высокого напряжения и конденсатора. Используйте безопасные методы измерений и соблюдайте правила безопасности.

Читайте также: