Где находят практическое применение вентиляторы и вентиляционные установки

Обновлено: 04.05.2024

По каким параметрам выбирать оборудование для организации приточно-вытяжной вентиляции на основе рекуператора, и какие возможности есть у современных автоматизированных систем?

Содержание

Выбор оборудования: базовые принципы и функционал

Для непосвященного человека самостоятельный выбор системы принудительной вентиляции – задача непростая. Для того, чтобы ее решить, владельцу дома предстоит проштудировать большое количество специальной литературы, изучить физику воздушных потоков, ознакомиться с нормативами СанПИН, а также произвести достаточно большое количество расчетов. При этом необходимо иметь в виду, что для достижения максимальной эффективности приточно-вытяжной вентиляции одного лишь рекуператора недостаточно. Система должна быть оснащена надежной и чувствительной автоматикой, а также, в зависимости от индивидуальных условий эксплуатации и климатических особенностей региона, укомплектована дополнительными нагревателями, охладителями, увлажнителями приточного воздуха и т.д. И, что крайне важно, такая система должна работать автономно, без постоянного участия человека.



Приступая к выбору системы принудительной вентиляции, домовладельцу следует учитывать не только большое число различных параметров, но и принимать во внимание бытовые ситуации.

Основными критериями, определяющими эффективность климатического оборудования, является снижение прямых теплопотерь дома, выражающееся в передаче тепла, от отработанного воздуха приточному, равно как и точный подбор и соблюдение рабочих параметров системы, а также ее автономность.

Главным расчетным значением принудительной вентиляционной установки является объем воздуха, который должен поступать в помещение в течение одного часа. Тут необходимо понимать, что в отличие от систем отопления, расчет мощности вентиляционного оборудования осуществляется не по площади дома или кубатуре комнат, а с учетом назначения каждого помещения и частоты присутствия в нем людей. Например, для спальни достаточным будет обеспечить воздухообмен в объеме 60-80 кубометров в час на одну комнату. Для большого помещения столовой, гостиной (совмещенной кухни-гостиной) потребуется уже 120-150 м3/час. Исходя из этих параметров определяется общая производительность установки.

Далее решается вопрос с догревом входящего воздушного потока и оснащением устройства нагревателем соответствующей мощности.

Традиционно рекуператоры требуют догрева воздуха до заданной температуры ввиду того, что их КПД в среднем составляет около 80%. Много это или мало? Давайте представим ситуацию. Небольшой дом жилой площадью 110-120 квадратных метров – это примерно 300 кубов воздуха. Для поддержания комфортной стабильной температуры при нормальном воздухообмене требуется приблизительно 4,5 квт тепловой энергии, которую дополнительно должна вырабатывать отопительная система. Если же мы имеем дело с рекуператором, то 80% этой энергии он будет отбирать у исходящего воздушного потока, передавая его входящему, оставшиеся 20% будут сниматься с нагревательного элемента непосредственно в установке.


В зависимости от индивидуальных условий жилища рекуператоры оснащаются либо водяными, либо электрическими нагревательными элементом. Это дополнительное оборудование, требующее управления и контроля. Сегодня нагреватели с внешним управлением или работающие в формате вкл/выкл, в климатическом оборудовании уже не применяются, они безнадежно устарели. Современное оборудование оснащается системой управления, которая плавно регулирует мощность нагревателя, и точно поддерживает температуру подаваемого воздуха. При этом все необходимые настройки уже прописаны в заводских условиях, а пользователь лишь задает желаемую температуру воздуха через пульт управления.

Помимо нагревателя, который традиционно является штатным элементом заводского моноблока, вентиляционное оборудование может оснащаться дополнительными системами. Например, для эксплуатации в условиях крайнего севера, жарких регионов или морского побережья. В этом случае установка увлажнителей или охладителей приточного воздуха может существенно повысить комфорт жилого дома.

Инверторное управление встроенным нагревателем

Как уже отмечалось выше, в современных вентиляционных установках применяются датчики температуры, регулирующие включение встроенного нагревателя для догрева входящего воздушного потока. Тенденция к энергосбережению диктует свои правила, поэтому сегодня наиболее передовым является инверторное управление нагревателем с использованием PID-регуляторов. Что это такое?


В обогревателях работа инвертора привязана к контролю температуры подаваемого воздуха независимо от внешних изменений (уровень воздухообмена, уличная температура). В чем его отличие от on/off систем? Простой нагреватель при срабатывании датчика включается на полную мощность и нагревает воздух до заданного значения. Когда температура превышает показатель термодатчика, нагреватель отключается, и температура подаваемого воздуха постепенно опускается, спустя некоторое время обогреватель снова включается. В результате мы имеем явные скачки энергопотребления в сети, повышенную нагрузку на нагревательный элемент, и что самое неприятное: колебание температуры подаваемого воздуха с очень большим диапазоном в 3 до 5 градусов, что крайне некомфортно.

Инверторное управление подразумевает установку в системе PID-регулятора (Пропорционально-интегрально-дифференцирующий). Это устройство используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимой точности нагрева. PID-регулятор является частью автоматики. Система самостоятельно определяет сколько времени нужно держать обогреватель включённым, чтобы он обеспечивал заданную температуру с наименьшими колебаниям. Обычно амплитуда находится в диапазоне 0,2-0,5 градуса.

К безусловным преимуществам инверторного управления встроенным нагревателем относятся:
- максимально точное соответствие заданной температуре воздуха;
- высокий уровень надежности и безопасности системы.

VAV-система. Автоматическое регулирование давления в воздушном канале

Когда заказчик определился с требуемой мощностью установки, а также с необходимостью дообрудования устройства нагревательным элементом, возникает вполне логичный вопрос: как управлять воздушным потоком? Иными словами, какой смысл поддерживать воздухообмен в помещении, в котором в данный момент никого нет, либо наоборот, как его повысить, когда все собрались в одной комнате? Для этих целей принудительные вентиляционные установки оснащаются VAV-системами (Variable Air Volume) с переменным расходом воздуха.


VAV-вентиляция представляет собой энергоэффективную систему с автоматическим поддержанием постоянного давления в воздушном канале. Основное ее назначение – это снижение эксплуатационных расходов и компенсация загрязнения фильтров.
Начнем с эксплуатационных расходов. Система сама регулирует мощность и объем подачи воздуха только в те помещения, где в данный момент находятся люди. Вентиляционные каналы при этом оснащаются клапанами с возвратной пружиной либо пропорциональными клапанами в зависимости от выбранного способа управления.


Существует несколько вариантов управления VAV-системами:
1. Управление от бытового выключателя. Например, человек заходит и нажимает клавишу выключателя, это приводит к полному открытию клапана и вентиляция помещения производится в полном объеме – это не самый экономичный, но самый бюджетный и понятный способ управления.
2. Управление от кругового регулятора. В этом случае применяется пропорциональный клапан, но объем подаваемого воздуха можно регулировать от 0 до 100%
3. Управление по датчику присутствия. Также как и в первом варианте, датчик срабатывает на посещение помещения жильцом и открывает возвратный клапан на полную мощность.
4. Управление по датчику СО2 – это самый энергоэффективный и не требующий вмешательства человека вариант управления вентиляцией. Система включается самостоятельно только тогда, когда она действительно нужна и подает воздух в том объеме, который необходим.


Второй основной функцией VAV-системы является компенсация загрязнения фильтров. Не секрет, что в процессе эксплуатации фильтры в системе вентиляции постепенно загрязняются, тем самым снижается их пропускная способность и, как следствие, уменьшается объем подаваемого воздуха. Автоматика по датчику давления, подключаемому к контроллеру, распознает давление в канале и автоматически выравнивает его, увеличивая или уменьшая скорость работы приточного и вытяжного вентиляторов.

Управление вентиляцией по датчику СО2

Рассмотрим более подробно вариант с оснащением системы вентиляции датчиками СО2. Это наиболее правильный и энергоэффективный метод регулирования воздухообмена.

В замкнутом помещении человек активно потребляет кислород, выдыхая при этом большое количество углекислого газа. При отсутствии системы вентиляции или ее недостаточности, процентное содержание СО2 в воздушной смеси постепенно повышается, и человек начинает ощущать нехватку воздуха, усталость и сонливость. Длительное пребывание в помещениях с высокой концентрацией СО2 приводит к негативным последствиям: общее ухудшение самочувствия, снижение работоспособности, головные боли и т.д.


Детектор СО2 с максимальной точностью контролирует уровень углекислого газа в помещениях в автоматическом режиме. Будучи подключенным к контроллеру, он не требует дополнительной калибровки или настройки.


Датчик СО2 устанавливается в вытяжном канале и автоматически мониторит уровень углекислого газа в воздушной смеси в помещении. Автоматика распознает сигналы датчика и автоматически поддерживает оптимальный уровень СО2 путем увеличения или уменьшения оборотов вентилятора. При этом, приточный и вытяжной вентиляторы работают синхронно, об этом тоже заботится автоматика. Диапазон регулирования вентиляторов от 30 до 100%. То есть, если, например в спальне в течение дня нет никакой активности, а показатели СО2 стабильны, система уменьшает подачу воздуха в помещение.

При организации системы вентиляции жилого дома, в котором несколько помещений, то есть несколько изолированных объемов воздуха, соответствующий датчик устанавливается в вытяжном канале для каждой комнаты или на стену в каждой комнате. Кроме того, каждое помещение оснащается пропорциональным клапаном на приточном канале и аналогичным клапаном на вытяжном канале. При появлении в помещении человека, датчиком СО2 будет регистрироваться повышение уровня углекислого газа. Пропорциональный клапан с электроприводом будет регулировать воздухообмен на основании показаний именно датчика своей комнаты. Такой вариант управления позволит максимально точно поддерживать качество воздуха в помещении, не позволяя появиться чувству нехватки воздуха, и не создавая излишнего воздухообмена, тем самым экономя электроэнергию.

Дополнительные опции: подключение охладителей и увлажнителей воздуха

Подключение охладителей входящего воздушного потока является одной из дополнительных опций автоматизированных систем вентиляции. Подобное оборудование весьма актуально в летний период, особенно в условиях жаркого климата. Охладитель позволяет снизить температуру приточного воздуха на определенную дельту, как правило – это 10-15 градусов. Одним из самых распространенных способов решения данного вопроса является подключение к системе принудительной вентиляции всем известного фреонового компрессорно-конденсаторного блока (ККБ), которыми оснащаются обычные бытовые кондиционеры.


В этом случае к контроллеру подключается датчик температуры вытяжного воздуха, который монтируется либо в вытяжном канале, либо в помещении. Требуемая температура в помещении задается посредством пульта, и по достижении порогового значения автоматика подключает охладитель.


Важно понимать, что охлаждение в системе вентиляции и кондиционирование воздуха в помещениях – это две разные вещи. Охладитель значительно меньше по мощности (имеется в виду холодильная мощность) нежели кондиционер в каждом отдельном помещении. Централизованное охлаждение позволяет снизить температуру подаваемого воздуха, на 10-15 градусов, и каждый раз это новый воздух, поступающий извне.

Здесь, для расчета эффективности большое значение имеют различные теплопритоки: окна, двери, теплоизоляция стен и т.д. Кондиционер же работает с одним и тем же изолированным объемом воздуха при аналогичной мощности ККБ, поэтому он позволяет понизить температуру на большее значение. Однако в большинстве случаев охладителя, подключенного к системе вентиляции, бывает достаточно для поддержания комфортной температуры.

Часто возникает вопрос: можно ли совмещать вентиляцию и кондиционирование, то есть, можно ли включать вентиляцию при работе кондиционеров и наоборот? Как при этом учитывать результирующее действие кондиционера? Безусловно, это возможно, при этом ничего специально учитывать не требуется – то тепло, которое приносит принудительная установка в помещение, для бытовых кондиционеров не является проблемой.

Помимо ККБ охлаждение воздуха также можно организовать при помощи водяного охлаждения от чиллера или при помощи геотермального контура.

Еще одним важнейшим показателем комфорта в помещениях является влажность. Упрощенно, физика данного процесса такова, что чем выше воздухообмен, тем ниже показатель влажности. В квартирах и домах с естественной вентиляцией – это не так заметно, поскольку там воздухообмен происходит достаточно медленно. Чтобы поддерживать нормальный уровень влажности достаточно использовать бытовой увлажнитель.

Но когда речь заходит о приточно-вытяжных системах вентиляции, то при их использовании процесс вымывания влаги идет очень активно и без дополнительного увлажнения входящего воздушного потока не обойтись.


На сегодняшний день одним из самых эффективных способов решения данной проблемы является использование в системах принудительной вентиляции энтальпийных рекуператоров. Данный тип рекуператора осуществляет передачу не только тепла, но и влаги от отработанного воздуха приточному. Благодаря этому поступающий с улицы сухой воздух увлажняется до приемлемого уровня, а выбрасываемый наружу, наоборот освобождается от излишней влаги, что позволяет эксплуатировать установку даже при температуре уличного воздуха до -40 С°. При этом на пластинах рекуператора не выпадает конденсат, что избавляет пользователя от необходимости заниматься устройством дополнительного дренажа. Энтальпийный рекуператор позволяет вернуть до 50% влаги в помещение. Влага передается в приточный воздух только за счет диффузии через полимерную мембрану, поэтому процесс может происходить даже при сверхнизких температурах.

В целом, энтальпийный рекуператор позволяет поддерживать приемлемый уровень влажности в помещениях без установки дополнительного оборудования. Однако при необходимости система принудительной вентиляции может доукомплектовываться канальным увлажнителем для обеспечения наилучшего комфорта.


Справка:
Протокол Modbus — самый распространенный промышленный протокол для M2M (Machine-to-machine)-взаимодействия. Де-факто является стандартом и поддерживается почти всеми производителями современного промышленного оборудования. Благодаря универсальности и открытости, стандарт позволяет интегрировать оборудование разных производителей.

Помимо всего перечисленного современное автоматизированное вентиляционное оборудование оснащается системами самодиагностики, которые позволяют обнаружить неисправность в работе компонентов. Автоматика отслеживает все ошибки, в случае необходимости останавливает работу оборудования и отображает на пульте или в приложении в смартфоне пользователя соответствующую ошибку.


Названные системы не только позволяют минимизировать участие человека в управлении оборудованием, но и значительно снижают эксплуатационные расходы, а также значительно улучшают качество работы вентиляционной системы. Автоматика имеет заводскую настройку и подключена ко всем исполнительным механизмам установки.

Современные автоматизированные системы вентиляции представляют собой весьма сложный комплекс оборудования, датчиков и программного обеспечения, поэтому доверяйте свой выбор профессионалам.


Вентиля́ция (от лат. ventilatio — проветривание) — процесс удаления отработанного воздуха из помещения и замена его наружным. В необходимых случаях при этом проводится: кондиционирование воздуха, фильтрация, подогрев или охлаждение, увлажнение или осушение, ионизация и т. д. Вентиляция обеспечивает санитарно-гигиенические условия (температуру, относительную влажность, скорость движения воздуха и чистоту воздуха) воздушной среды в помещении, благоприятные для здоровья и самочувствия человека, отвечающие требованиям санитарных норм, технологических процессов, строительных конструкций зданий, технологий хранения и т. д.

Также под этим термином в технике часто имеются в виду системы оборудования, устройств и приборов для этих целей.

Содержание

Исторический очерк



Отдельные приёмы организованной вентиляции закрытых помещений применялись ещё в древности. Вентиляция помещений до начала XIX века сводилась, как правило, к естественному проветриванию. Теорию естественного движения воздуха в каналах и трубах создал М. В. Ломоносов. В 1795 В. X. Фрибе впервые изложил основные положения, определяющие интенсивность воздухообмена в отапливаемом помещении сквозь неплотности наружных ограждений, дверные проёмы и окна, положив этим начало учению о нейтральной зоне.

В начале XIX в. получает развитие вентиляция с тепловым побуждением приточного и удаляемого из помещения воздуха. Отечественные учёные отмечали несовершенство такого рода побуждения и связанные с ним большие расходы теплоты. Академик Э. X. Ленд указывал, что полная вентиляция может быть достигнута только механическим способом.

С появлением центробежных вентиляторов технология вентиляции помещений быстро совершенствуется. Первый успешно работавший центробежный вентилятор был предложен в 1832 А. А. Саблуковым. В 1835 этот вентилятор был применён для проветривания Чагирского рудника на Алтае. Саблуков предложил его и для вентиляции помещений, трюмов кораблей, для ускорения сушки, испарения и т. д. Широкое распространение вентиляции с механическим побуждением движения воздуха началось с конца XIX века.

Одним из крупнейших ученых в области вентиляции и отопления являлся профессор В. М. Чаплин.

Одним из этапов развития вентиляции это появление электрических двигателей с изменяемой частотой оборотов. Первое упоминание о вентиляторе с таким электродвигателем ознаменовано 1972—1974 годами, когда компания Каналфлэкт применила этот двигатель в канальном вентиляторе.

Вредные выделения в помещении

Основное назначение вентиляции — борьба с вредными выделениями в помещении. К вредным выделениям относятся:

  • избыточное тепло;
  • избыточная влага;
  • различные газы и пары вредных веществ;
  • пыль.

Типы вентиляционных систем

Вентиляционная система — совокупность устройств для обработки, транспортирования, подачи и удаления воздуха. Системы вентиляции классифицируются по следующим признакам:

  • По способу создания давления и перемещения воздуха: с естественным и искусственным (механическим) побуждением
  • По назначению: приточные и вытяжные
  • По способу организации воздухообмена: общеобменные, местные, аварийные, противодымные
  • По конструктивному исполнению: канальные и бесканальные

По количеству воздуха на человека в час. К примеру, в бомбоубежище — не менее 2,5 м³/ч, в офисном помещении — не менее 20 м³ в час для посетителей, находящихся в помещении не более 2 часов, для постоянно находящихся людей — не менее 60 м³ в час. Расчёт вентиляции производится с помощью следующих параметров: производительность по воздуху (м³/ч), рабочее давление (Па) и скорость потока воздуха в воздуховодах (м/с), допустимый уровень шума (дБ), мощность калорифера (кВт). Норматив по воздухообмену регламентируется строительными нормами и правилами (СНиП) и санитарными нормами и правилами (Сан Пин)

Типы систем по способу побуждения движения воздуха

Естественная вентиляция

При естественной вентиляции воздухообмен осуществляется из-за разницы давления снаружи и внутри здания.
Под неорганизованной естественной системой вентиляции понимается воздухообмен в помещении, происходящий за счет разности давлений внутреннего и наружного воздуха и действий ветра через неплотности ограждающих конструкций, а также при открывании форточек, фрамуг и дверей.
Организованной естественной вентиляцией называется воздухообмен, происходящий за счет разности давлений внутреннего и наружного воздуха, но через специально устроенные приточные и вытяжные проемы, степень открытия которых регулируется. Для создания пониженного давления в вентиляционном канале может использоваться дефлектор.

Механическая вентиляция

При механической вентиляции воздухообмен происходит за счет разности давления, создаваемой вентилятором или эжектором. Этот способ вентиляции более эффективен, так как воздух предварительно может быть очищен от пыли и доведен до требуемой температуры и влажности.

Типы систем по назначению

Приточная вентиляция

Приточной системой вентиляции называется система, подающая в помещение определенное количество воздуха, который может подогреваться в зимний период и охлаждаться в летний.

Вытяжная вентиляция

Вытяжная вентиляция служит для удаления из помещения вредных выделений.

Типы систем по способу организации воздухообмена

Общеобменная вентиляция

Общеобменная система вентиляции предусматривается для создания одинаковых условий и параметров воздушной среды (температуры, влажности и подвижности воздуха) во всём объёме помещения, главным образом в его рабочей зоне (1,5—2,0 м от пола), когда вредные вещества распространяются по всему объёму помещения и нет возможности (или нет необходимости) их уловить в месте образования.

Местная вентиляция

Местной вентиляцией называется такая, при которой воздух подают на определённые места (местная приточная вентиляция) и загрязнённый воздух удаляют только от мест образования вредных выделений (местная вытяжная вентиляция). Местная приточная вентиляция может обеспечивать приток чистого воздуха (предварительно очищенного и подогретого) к определённым местам. И наоборот, местная вытяжная вентиляция удаляет воздух от определённых мест с наибольшей концентрацией вредных примесей в воздухе. Примером такой местной вытяжной вентиляции может быть вытяжка на кухне, которая устанавливается над газовой или электрической плитой. Чаще всего используются такие системы в промышленности.

Аварийная вентиляция

Аварийная система вентиляции устанавливается в производственных помещениях, где возможен неожиданный выброс чрезвычайно опасных вредных веществ в количествах, значительно превышающих ПДК, с целью их быстрого удаления.

Противодымная вентиляция

Противодымная система вентиляции устанавливается в производственных зданиях, где применяются технологии с повышенной пожароопасностью, и служит для обеспечения эвакуации людей. С помощью этой системы подается необходимое количество воздуха, препятствующего распространению дыма в помещении. Система работает в начальной стадии пожара.

Вентиляционное оборудование

Системы вентиляции включают в себя группы самого разнообразного оборудования: прежде всего, это вентиляторы, вентиляторные агрегаты или вентиляционные установки. Среди дополнительного оборудования — шумоглушители, воздушные фильтры, электрические и водяные воздухонагреватели, регулирующие и воздухораспределительные устройства и пр.

Вентиляторы

Вентилятор представляет собой механическое устройство, предназначенное для перемещения воздуха по воздуховодам системы вентиляции. По конструкции и принципу действия вентиляторы делятся на канальные (круглые и прямоугольные), крышные, осевые (аксиальные), центробежные (радиальные) и тангенциальные (диаметральные), батутные и т.д.

Осевые вентиляторы





Осевой вентилятор представляет собой расположенное в цилиндрическом кожухе (обечайке) колесо из консольных лопастей, закреплённых на втулке под углом к плоскости вращения. Рабочее колесо как правило насаживается непосредственно на ось электродвигателя.
При вращении колеса воздух захватывается лопастями и перемещается в осевом направлении. При этом перемещение воздуха в радиальном направлении практически отсутствует.
Осевые вентиляторы имеют больший КПД по сравнению с радиальными и диаметральными. Такие вентиляторы, как правило, применяют для подачи значительных объёмов воздуха при малых аэродинамических сопротивлениях вентиляционной сети.

Центробежные (радиальные) вентиляторы




Центробежный (радиальный) вентилятор представляет собой расположенное в спиральном кожухе лопаточное (рабочее) колесо, при вращении которого воздух, попадающий в каналы между его лопатками, двигается в радиальном направлении к периферии колеса и сжимается. Под действием центробежной силы он отбрасывается в спиральный кожух и далее направляется в нагнетательное отверстие.

В зависимости от назначения вентилятора, лопатки рабочего колеса изготавливают загнутыми вперёд или назад. Количество лопаток бывает различным в зависимости от типа и назначения вентилятора. Применение радиальных вентиляторов с лопатками, загнутыми назад, даёт экономию электроэнергии примерно 20 %. Также они легко переносят перегрузки по расходу воздуха. Преимуществами радиальных вентиляторов с лопатками рабочего колеса, загнутыми вперёд, являются меньший диаметр колеса, а соответственно и меньшие размеры самого вентилятора, и более низкая частота вращения, что создаёт меньший шум.

Диаметральные (тангенциальные) вентиляторы

Диаметральный (тангенциальный) вентилятор состоит из рабочего колеса барабанного типа с загнутыми вперёд лопатками и корпуса, имеющего патрубок на входе и диффузор на выходе. Действие диаметральных вентиляторов основано на двукратном поперечном прохождении потока воздуха через рабочее колесо.

Используются в основном в кондиционерах (внутренние блоки сплит-систем) и тепловых завесах. В вентиляционных сетях диаметральные вентиляторы используются крайне редко.

Шумоглушители

Установка в систему вентиляции шумоглушителей является одной из эффективных мер по снижению аэродинамического шума в воздушном потоке. Наиболее часто применяемые шумоглушители конструктивно делятся на пластинчатые и трубчатые. Главная их особенность — наличие развитых поверхностей, облицованных звукопоглощающим материалом (минеральная вата, стекловолокно и пр.).
Чаще всего шумоглушитель устанавливается между вентилятором и магистральным воздуховодом.
Необходимость установки шумоглушителя в вентиляционной системе должна быть подтверждена специальным акустическим расчётом.

Воздушные фильтры

Служат для очистки приточного воздуха, а в некоторых случаях и вытяжного воздуха. Существует множество типов конструкций воздушных фильтров. Принцип действия, конструкция и материал фильтра зависят от требуемых параметров воздуха. В вентиляционных системах воздушные фильтры классифицируются по степени очистки воздуха. Чем меньше частички пыли, эффективно улавливыемые фильтром, тем выше его класс очистки. Согласно принятой международной классификации, существует четыре класса фильтров грубой очистки воздуха (классы G1-G4), пять классов тонкой очистки (классы F5-F9), четыре класса фильтров особо тонкой очистки, именуемых так же HEPA-фильтрами (классы H10-H14), а также три класса ультра-тонкой очистки воздуха, или ULPA-фильтры (классы U15-U17). Помимо класса очистки, важными параметрами фильтров являются их пылеемкость и аэродинамическое сопротивление.

Воздухонагреватели

В современных зданиях система вентиляции, как правило, работает совместно с системой отопления здания, а в некоторых случаях полностью её заменяет. Для подогрева воздуха в вентиляционных системах используются воздухонагреватели. Большинство воздухонагревателей в вентиляционных системах — водяные либо электрические. Водяные воздухонагреватели это по сути теплообменники, в которых воздух получает тепло от горячей воды, нагретой в отопительном котле или поступающей из центральной теплосети. Электрические воздухонагреватели питаются от электросети и преобразуют электрическую энергию в тепловую.

Противопожарные клапаны



Одной из главных характеристик клапана является тип привода заслонки. Существуют следующие типы:

  • пружинный с тепловым замком;
  • пружинный с электромагнитной защелкой;
  • электромеханический (электромоторный).

Пружинный привод с тепловым замком дешевле остальных и не требует дополнительной автоматики и подвода электропитания. Однако он имеет ряд существенных недостатков:

Заметно улучшить работу вентиляторов различного назначения, повысить их производительность и снизить издержки помогает автоматизация с помощью преобразователей частоты.

Принцип работы

Управление воздушным потоком без ПЧ в контуре осуществляется с помощью заслонок воздуховодов. Электровентиляторы работают с максимальной производительностью и постоянной скоростью, вне зависимости от того, какой объем воздуха требуется прокачать. Энергопотребление в такой системе будет одинаково высоким, а износ механизмов ускоренным.


Частотники позволяют наладить воздухообмен с наименьшими затратами, уменьшают износ оборудования и удлиняют сервисные интервалы. Они меняют характеристики частоты и/или напряжения питающего тока и мягко регулируют производительность электровентиляторов.

В схеме управления с ПЧ электродвигатель вентилятора нужно подключать через преобразователь. По сигналу датчиков давления и температуры прибор может изменять скорость вращения лопастей, плавно разгонять или останавливать вентилятор.

Таким образом, электродвигатель функционирует в щадящем режиме, а это существенно увеличивает его ресурс и исключает ударные нагрузки на электросеть. Оборудованию реже нужен ремонт, время простоя сокращается. Экономия электроэнергии составляет 20–40%, в зависимости от режима и условий работы.


Области применения

Современные частотники — это высокотехнологичные интеллектуальные приборы с микропроцессорным управлением. Благодаря многофункциональности их можно использовать во всех типах вентиляционных систем:

  • Общеобменная вентиляция для всех помещений объекта. Один ПЧ может управлять согласованной работой двух контуров — вытяжки и приточки.
  • Система дымоудаления с нагнетанием чистого воздуха в контрольные зоны (в местах скопления людей). При пожаре ПЧ синхронно регулирует разряженное и избыточное давление.
  • Приточная вентиляция со стабильной производительностью. ПЧ контролирует заданные параметры, защищает электродвигатель и связывает оконечное оборудование с централизованным автоматическим контуром управления.
  • Приточная многозональная вентиляция с переменной производительностью. С ПЧ отпадает необходимость регулировать поток заслонками. Это упрощает и удешевляет систему. При этом прибор может задавать индивидуальные режимы работы вентиляторов в каждом помещении.
  • Местная вытяжка. ПЧ регулирует производительность оборудования в соответствии с настройками или по сигналам с датчиков.
  • Рециркуляционная вентиляция. ПЧ отвечает за соотношение поступающего и удаляемого воздуха, по мере необходимости изменяя скорость вращения соответствующих электровентиляторов.
  • Рекуперационная система. ПЧ управляет роторным рекуператором, автоматически регулирует его производительность при изменении температуры воздуха.

Преимущества и недостатки использования

Применение частотников для управления работой вентиляторов имеет много плюсов. Некоторые из них:

  • Снижается потребление электричества.
  • Плавный пуск, благодаря которому нет динамического удара.
  • Нет перегрузок при включении обратного хода.
  • Автоматизируются и упрощаются процессы управления.

Из минусов — относительно высокая стоимость приобретения. Однако она быстро окупается за счет экономии электричества и снижения эксплуатационных расходов.

Видео

В этом видеоролике вы увидите, какие преимущества дают ПЧ при интеграции их в систему воздушного охлаждения жидких и газообразных продуктов на объектах нефтегазового комплекса.

Заметно улучшить работу вентиляторов различного назначения, повысить их производительность и снизить издержки помогает автоматизация с помощью преобразователей частоты.

Принцип работы

Управление воздушным потоком без ПЧ в контуре осуществляется с помощью заслонок воздуховодов. Электровентиляторы работают с максимальной производительностью и постоянной скоростью, вне зависимости от того, какой объем воздуха требуется прокачать. Энергопотребление в такой системе будет одинаково высоким, а износ механизмов ускоренным.


Частотники позволяют наладить воздухообмен с наименьшими затратами, уменьшают износ оборудования и удлиняют сервисные интервалы. Они меняют характеристики частоты и/или напряжения питающего тока и мягко регулируют производительность электровентиляторов.

В схеме управления с ПЧ электродвигатель вентилятора нужно подключать через преобразователь. По сигналу датчиков давления и температуры прибор может изменять скорость вращения лопастей, плавно разгонять или останавливать вентилятор.

Таким образом, электродвигатель функционирует в щадящем режиме, а это существенно увеличивает его ресурс и исключает ударные нагрузки на электросеть. Оборудованию реже нужен ремонт, время простоя сокращается. Экономия электроэнергии составляет 20–40%, в зависимости от режима и условий работы.


Области применения

Современные частотники — это высокотехнологичные интеллектуальные приборы с микропроцессорным управлением. Благодаря многофункциональности их можно использовать во всех типах вентиляционных систем:

  • Общеобменная вентиляция для всех помещений объекта. Один ПЧ может управлять согласованной работой двух контуров — вытяжки и приточки.
  • Система дымоудаления с нагнетанием чистого воздуха в контрольные зоны (в местах скопления людей). При пожаре ПЧ синхронно регулирует разряженное и избыточное давление.
  • Приточная вентиляция со стабильной производительностью. ПЧ контролирует заданные параметры, защищает электродвигатель и связывает оконечное оборудование с централизованным автоматическим контуром управления.
  • Приточная многозональная вентиляция с переменной производительностью. С ПЧ отпадает необходимость регулировать поток заслонками. Это упрощает и удешевляет систему. При этом прибор может задавать индивидуальные режимы работы вентиляторов в каждом помещении.
  • Местная вытяжка. ПЧ регулирует производительность оборудования в соответствии с настройками или по сигналам с датчиков.
  • Рециркуляционная вентиляция. ПЧ отвечает за соотношение поступающего и удаляемого воздуха, по мере необходимости изменяя скорость вращения соответствующих электровентиляторов.
  • Рекуперационная система. ПЧ управляет роторным рекуператором, автоматически регулирует его производительность при изменении температуры воздуха.

Преимущества и недостатки использования

Применение частотников для управления работой вентиляторов имеет много плюсов. Некоторые из них:

  • Снижается потребление электричества.
  • Плавный пуск, благодаря которому нет динамического удара.
  • Нет перегрузок при включении обратного хода.
  • Автоматизируются и упрощаются процессы управления.

Из минусов — относительно высокая стоимость приобретения. Однако она быстро окупается за счет экономии электричества и снижения эксплуатационных расходов.

Видео

В этом видеоролике вы увидите, какие преимущества дают ПЧ при интеграции их в систему воздушного охлаждения жидких и газообразных продуктов на объектах нефтегазового комплекса.

Читайте также: